
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2011

Systemic highway safety assessment: A general
analysis of funding allocation and a specific study of
the horizontal curve crash problem
Corey Douglas Bogenreif
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Civil and Environmental Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Bogenreif, Corey Douglas, "Systemic highway safety assessment: A general analysis of funding allocation and a specific study of the
horizontal curve crash problem" (2011). Graduate Theses and Dissertations. 11976.
https://lib.dr.iastate.edu/etd/11976

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11976&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11976&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11976&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11976&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11976&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11976&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=lib.dr.iastate.edu%2Fetd%2F11976&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11976?utm_source=lib.dr.iastate.edu%2Fetd%2F11976&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

 

 

Systemic highway safety assessment: A general analysis of funding allocation and a specific 

study of the horizontal curve crash problem 

 

by 

 

Corey Douglas Bogenreif 

 

 

 

A thesis submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

 

Major:  Civil Engineering (Transportation Engineering) 

Program of Study Committee 

Reginald Souleyrette, Major Professor 

Thomas Stout 

Kelly Strong 

 

 

 

Iowa State University 

Ames, Iowa 

2011 

Copyright © Corey Douglas Bogenreif, 2011.  All rights reserved. 



www.manaraa.com

ii 

 

TABLE OF CONTENTS 

 
LIST OF FIGURES ........................................................................................................... v 

LIST OF TABLES .......................................................................................................... viii 

ACKNOWLEDGMENTS ................................................................................................ ix 

ABSTRACT ...................................................................................................................... x 

 CHAPTER 1. GENERAL INTRODUCTION ........................................................................ 1 

1.1 INTRODUCTION ....................................................................................................... 1 

1.2 THESIS ORGANIZATION ........................................................................................ 2 

1.3 REVIEW OF LITERATURE ...................................................................................... 2 

 CHAPTER 2. OPTIMIZING SAFETY FUND ALLOCATION ............................................ 6 

2.1 INTRODUCTION ....................................................................................................... 6 

2.2 REVIEW OF LITERATURE ...................................................................................... 8 

2.3 DATA ........................................................................................................................ 10 

2.3.1 Crash and roadway data ................................................................................... 10 

2.3.2 Data related to statewide highway safety projects .......................................... 12 

2.4 METHODOLOGY .................................................................................................... 12 

2.4.1 Crash data classification .................................................................................. 12 

2.4.2 Safety project classification ............................................................................. 13 

2.4.3 Combined crash and safety project classifications .......................................... 13 

2.5 ANALYSIS AND RESULTS ................................................................................... 14 

2.5.1 Statewide crash data classification .................................................................. 14 

2.5.2 Statewide allocation of safety funds ................................................................ 16 

2.5.3 Combined crash data and safety project classification .................................... 19 

2.5.4 Safety funding allocation relative to crash density .......................................... 25 

2.6 CONCLUSIONS AND RECOMMENDATIONS .................................................... 29 

 CHAPTER 3. SYSTEMWIDE IDENTIFICATION OF HORIZONTAL CURVES AND 

GEOMETERY PARAMETERS ............................................................................................ 31 



www.manaraa.com

iii 

 

3.1 INTRODUCTION ..................................................................................................... 31 

3.2 REVIEW OF LITERATURE .................................................................................... 33 

3.3 DATA ........................................................................................................................ 33 

3.3.1 Roadway data .................................................................................................. 33 

3.3.2 Calculated curve data ...................................................................................... 34 

3.3.3 As-built curve data .......................................................................................... 34 

3.4 METHODOLOGY .................................................................................................... 35 

3.4.1 Curve identification ......................................................................................... 35 

3.4.2 Curve identification validation process ........................................................... 37 

3.5 ANALYSIS ............................................................................................................... 38 

3.5.1 Horizontal curve length estimation ................................................................. 39 

3.5.2 Horizontal curve radius estimation using the circular regression method....... 42 

3.5.3 Horizontal curve radius estimation using the long chord method ................... 46 

3.5.3 Horizontal curve radius estimation comparison .............................................. 48 

3.5.5 Sources of error ............................................................................................... 50 

3.5.6 Sensitivity of errors ......................................................................................... 53 

3.6 CONCLUSIONS AND RECOMMENDATIONS .................................................... 56 

 CHAPTER 4. HORIZONTAL CURVE CRASH PREDICTION MODEL ......................... 58 



www.manaraa.com

iv 

 

4.1 INTRODUCTION ..................................................................................................... 58 

4.2 REVIEW OF LITERATURE .................................................................................... 58 

4.3 DESCRIPTIVE STATISTICS .................................................................................. 62 

4.3.1 All rural, paved, two-lane roadway horizontal curves .................................... 62 

4.3.2 Primary rural, paved, two-lane roadway horizontal curves ............................. 70 

4.3.3 Secondary rural, paved, two-lane roadway horizontal curves ......................... 74 

4.4 METHODOLOGY .................................................................................................... 78 

4.4.1 Data collection and preparation ....................................................................... 78 

4.4.2 Negative binomial regression .......................................................................... 78 

4.4.3 Variables .......................................................................................................... 79 

4.5 ANALYSIS ............................................................................................................... 81 

4.5.1 All crashes with Rregression................................................................................. 81 

4.5.2 Serious crashes with Rregression .......................................................................... 82 

4.5.3 All crashes with Rchord ..................................................................................... 82 

4.5.4 Serious crashes with Rchord .............................................................................. 83 

4.5.5 Goodness-of-fit comparison ............................................................................ 84 

4.5.6 Empirical Bayes usefulness comparison ......................................................... 85 

4.5.6 Interpretation of models .................................................................................. 86 

4.6 CONCLUSIONS AND RECOMMENDATIONS .................................................... 88 

 CHAPTER 5. GENERAL CONCLUSIONS ........................................................................ 90 

5.1 GENERAL DISCUSSION ........................................................................................ 90 

5.2 RECOMMENDATIONS and CONCLUSIONS ....................................................... 90 

5.3 FUTURE RESEARCH .............................................................................................. 91 

5.3.1 Funding allocation ........................................................................................... 91 

5.3.2 Expanded horizontal curve identification ........................................................ 91 

5.3.3 Additional variables ......................................................................................... 91 

5.4 REFERENCES .......................................................................................................... 92 

 

 



www.manaraa.com

v 

 

LIST OF FIGURES 

 

Figure 2-1. Fatal crash trend on Iowa roadways by facility type, 1970-2009. ................................7 

Figure 2-2. Fatal crash rate trend on Iowa roadways by facility type, 1970-2009. .........................7 

Figure 2-3. The effect of cartography changes. .............................................................................11 

Figure 2-4. Crash and safety project data timeline ........................................................................12 

Figure 2-5. State system – fatal and serious injury crash data classification. ................................15 

Figure 2-6. Local system – fatal and serious injury crash classification. ......................................15 

Figure 2-7. State system – allocation of funding by project type and location. ............................17 

Figure 2-8. Local system – allocation of funding by project type and location. ...........................18 

Figure 2-9. "Relative difference" example calculation. .................................................................19 

Figure 2-10. “Relative difference” color scale. .............................................................................20 

Figure 2-11. Matched crash data and safety funding data classification for rural roadway 

facilities. .............................................................................................................................21 

Figure 2-12. Matched crash data and safety funding data classification for urban state system 

facilities. .............................................................................................................................22 

Figure 2-13. Matched crash data and safety funding data classification for urban local system 

facilities. .............................................................................................................................23 

Figure 2-14. Relative safety investment for Iowa roadway classifications (crash densities 

show in parentheses). .........................................................................................................25 

Figure 3-1. Two-lane horizontal curve distribution with paved two-lane, rural roads shown in 

gray. ...................................................................................................................................32 

Figure 3-2. Plan set curve data locations. ......................................................................................35 

Figure 3-3. Curve identification process with GPS traces and simplified polyline vertices. ........36 

Figure 3-4. Actual curve length vs. estimated curve length. .........................................................40 

Figure 3-5. Curve length versus percent error of estimated length value. .....................................41 

Figure 3-6. Curve length histogram comparison for sample curves and primary roadway 

curves. ................................................................................................................................42 

Figure 3-7. Curve length histogram comparison for sample curves and all curves in database. ...42 



www.manaraa.com

vi 

 

Figure 3-8. Actual radius vs. circular regression method estimated radius. ..................................43 

Figure 3-9. Curve radius versus percent error of estimated radius value, Rregression. ......................44 

Figure 3-10. Curve radius (Rregression) histogram comparison for sample curves and primary 

roadway curves. .................................................................................................................45 

Figure 3-11. Curve radius (Rregression) histogram comparison for sample curves and all curves 

in database. .........................................................................................................................45 

Figure 3-12. Actual curve radius vs. long chord method estimated curve radius. .........................46 

Figure 3-13. Curve radius versus percent error of estimated radius value, Rchord. .........................47 

Figure 3-14. Curve radius (Rchord) histogram comparison for sample curves and primary 

roadway curves. .................................................................................................................48 

Figure 3-15. Curve radius (Rchord) histogram comparison for sample curves and all curves in 

database. .............................................................................................................................48 

Figure 3-16. Percent RMSE comparison by curve radius category. ..............................................49 

Figure 3-17. Effect of lateral shift on travel path radius. ...............................................................50 

Figure 3-18. Effect of incorrect GPS trace “location” data. ..........................................................51 

Figure 3-19. Long chord method underestimation example. .........................................................52 

Figure 3-20. Sensitivity of predicted crash frequency to radius percent difference. .....................54 

Figure 3-21. Sensitivity of predicted crash frequency to Rregression percent difference. .................55 

Figure 3-22. Sensitivity of predicted crash frequency to Rchord percent difference. ......................56 

Figure 4-1. Curve crash rate as a function of radius. .....................................................................59 

Figure 4-2. Number of horizontal curves by number of all crashes. .............................................63 

Figure 4-3. All crashes by AADT on all rural, paved, two-lane roadway horizontal curves. .......64 

Figure 4-4. Serious crashes (K+A) by AADT on all rural, paved, two-lane roadway 

horizontal curves. ...............................................................................................................64 

Figure 4-5. Number of crashes by curve radius category for all rural, paved, two-lane 

roadway curves. .................................................................................................................65 

Figure 4-6. Crash severity ratio by curve radius category for all rural, paved, two-lane 

roadway curves. .................................................................................................................66 

Figure 4-7. Crash rate per HMVMT for all crash severities by curve radius category. ................67 

Figure 4-8. Fatal crash rate per HMVMT by curve radius category for all curves. ......................68 



www.manaraa.com

vii 

 

Figure 4-9. Crash frequency for all horizontal curves by crash severity and lane width. .............68 

Figure 4-10. Crash frequency for all horizontal curves by crash severity and terrain adjacent 

to the roadway. ...................................................................................................................69 

Figure 4-11. Crash frequency for all horizontal curves by crash severity and shoulder type........70 

Figure 4-12. Crash frequency for all horizontal curves by crash severity and shoulder width. ....70 

Figure 4-13. All crash frequency by AADT on primary, rural, paved, two-lane roadway 

horizontal curves. ...............................................................................................................71 

Figure 4-14. Serious crash (K+A) frequency by AADT on primary, rural, paved, two-lane 

roadway horizontal curves. ................................................................................................72 

Figure 4-15. Crash rate per HMVMT on primary roadway curves for all crash severities by 

curve radius category. ........................................................................................................72 

Figure 4-16. All crash frequency by AADT on secondary, rural, paved, two-lane roadway 

horizontal curves. ...............................................................................................................74 

Figure 4-17. Serious crash frequency by AADT on secondary, rural, paved, two-lane 

roadway horizontal curves. ................................................................................................75 

Figure 4-18. Crash rate per HMVMT on secondary roadway curves for all crash severities by 

curve radius category. ........................................................................................................76 

Figure 4-19. Fatal crash rate per HMVMT on secondary and primary roadway curves 

comparison. ........................................................................................................................76 

Figure 4-20. Expected all-crash frequency vs. curve radius on all horizontal curves. ..................86 

Figure 4-21. Expected serious crash frequency vs. curve radius on all horizontal curves. ...........86 

Figure 4-22. Effect of radius on curve speed. ................................................................................87 

  

  



www.manaraa.com

viii 

 

LIST OF TABLES 

Table 1-1. KABCO scale for crash severity. ...................................................................................3 

Table 2-1. Comparison of rural expressway sideslope flattening project and rural secondary 

two-lane rumble strip projects. ..........................................................................................27 

Table 2-2. SICL list crash comparison. .........................................................................................28 

Table 2-3. Iowa 5 percent crash comparison for SVROR crashes. ...............................................29 

Table 3-1. Iowa statewide crash comparison for horizontal curves (2001-2009). .........................31 

Table 3-2. Identified curves by system type. .................................................................................39 

Table 3-3. Percent RMSE comparison by curve radius category. .................................................49 

Table 3-4. Long chord method calculation example. ....................................................................53 

Table 4-1. Horizontal curve crashes by severity, lane width, and terrain for primary roads. ........73 

Table 4-2. Horizontal curve crashes by severity, shoulder type, and shoulder width for 

primary roads. ....................................................................................................................74 

Table 4-3. Horizontal curve crashes by severity, lane width, and terrain for secondary roads. ....77 

Table 4-4. Horizontal curve crashes by severity, shoulder type, and shoulder width for 

secondary roads. .................................................................................................................77 

Table 4-5. All crash model using Rregression. ...................................................................................81 

Table 4-6. Serious crash model using Rregression. ............................................................................82 

Table 4-7. All crash model using Rchord. ........................................................................................83 

Table 4-8. Serious crash model using Rchord. .................................................................................84 

Table 4-9.  McFadden's ρ
2
 goodness-of-fit comparison. ...............................................................84 

Table 4-10. Calculated average weights for comparing a model's usefulness in the empirical 

Bayes process. ....................................................................................................................85 



www.manaraa.com

ix 

 

ACKNOWLEDGMENTS 

I would first like to thank Dr. Souleyrette for his guidance, encouragement and 

support throughout this research process.  I would also like to thank Zach Hans for providing 

me with the GIS expertise and knowledge needed to complete this research.  I would like to 

thank Yu Qui for the statistical help and the numerous undergraduate assistants who helped 

create, compile, and analyze the vast amount of data required for this research.  Additionally, 

I want to thank my program of study committee for their support and assistance.  Finally, I 

would like to thank my soon to be wife, Mallory, for always supporting me throughout my 

studies and work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



www.manaraa.com

x 

 

ABSTRACT 

It is well documented that motor vehicle crashes are a public safety concern. 

However, traditional approaches do not always lend themselves to addressing the complete 

extent of this “safety problem”.  Identifying the extent of the “safety problem” is an 

important step in optimizing safety fund allocation and analyzing horizontal curve safety.  

This study investigates the allocation of safety expenditures in Iowa, relative to crash data.  

The matching of crash data with safety expenditures suggests the shift of funds from the high 

crash density, state system to facilities on the low density, local system.  However, the 

redistribution of funding should also consider factors such as crash density and benefit cost.  

Furthermore, because some crashes are too widely distributed to be identified using 

traditional high crash location methodology; a balance of systematic and high crash location 

methods should be considered.  Ultimately, the optimum balance of safety resources should 

reduce the most possible fatal and serious injury crashes.  This study also investigated a 

systematic method for identifying and estimating geometric parameters on horizontal curves.  

A validation of this method showed that as horizontal curve radius decrease, sensitivity to 

errors in the estimated curve radius increase.  Although some large errors associated with the 

estimated curve radius were found, predicted crash frequency for all curves was found to be 

no more than twenty percent different than the actual predicted crash frequency.  Lastly, 

safety performance functions created for the horizontal curve database did not yield a 

concrete correlation between curve radius and crash frequency.  Because of the random 

nature of fatal and major injury crashes, care is advised when creating crash models for these 

crashes. 
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 CHAPTER 1. GENERAL INTRODUCTION 

1.1 INTRODUCTION 

Highway safety in the United States is a national epidemic.  Nationwide, in 2009, 

there were 33,808 traffic related fatalities.  Furthermore, motor vehicle traffic crashes are the 

leading cause of death for people ages four to thirty-five, and the ninth leading cause of death 

for all age groups (NHTSA, 2006).  Although there has been a recent downward trend, the 

number of traffic fatalities nationwide has remained largely constant since the mid 1980s.  

Subsequently, the approach for assessing highway safety has begun to transition from action 

based on “experience, intuition, judgment, and tradition, to action based on empirical 

evidence, science, and technology” (HSM Practitioner’s Guide, 2011).  In Iowa, the 

implementation of these evolving methods is especially important for optimizing safety 

funding and analyzing horizontal curve safety performance.   

In order to optimize highway safety expenditures, funds must not only be invested in 

actions that can most effectively mitigate the “safety problem”, but must also match the 

extent of the “safety problem”.  However, traditional methods do not always lend themselves 

to evenly addressing these safety needs.  Theoretically, if all “safety problem” types can be 

equally mitigated, funding should match the extent of the problem.  Therefore, identifying 

the extent of the “safety problem” and determining the allocation of funds is an important 

first step in the optimization of safety expenditures.   

Identifying the extent of the “safety problem” is also important for horizontal curve 

safety.  In Iowa, rural horizontal curves comprise of only 1.2 percent of the total statewide 

roadway system, yet, 10.5 percent of the state’s fatal crashes occur on curves.  In order to 

effectively address the safety performance of these horizontal curves, curve locations, 

characteristics and geometric parameters must be known.  However, little is known about 

horizontal curves in Iowa.  Furthermore, systematic curve identification and parameter 

estimation is difficult on a large system. 

This thesis addresses key issues related to these two topics.  First, a data-driven 

analysis method of balancing statewide safety funding relative to crash data is developed and 

critiqued.  Secondly, a systemic horizontal curve identification and geometric parameter 
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estimation method is explored and validated.  Lastly, crash prediction models are developed 

for estimating the number of expected crashes on horizontal curves. 

1.2 THESIS ORGANIZATION 

This thesis is divided into five chapters.  Chapter 1 (this chapter) provides an 

introduction of the thesis and a review of basic highway safety literature related to high crash 

locations and systematic analysis.  Chapter 2 investigates the highway safety funding 

allocation in Iowa relative to the eight year statewide crash data.  It also discusses 

considerations for balancing high crash location and systematic analysis in the safety funding 

allocation process. 

Chapter 3 provides an overview of a systemic horizontal curve identification and 

parameter estimation process as well as a validation of the method.  Chapter 4 consists of the 

development of safety performance functions for predicting horizontal curve crashes on rural, 

paved, two-lane highways.  Finally, Chapter 5 includes the general conclusions of the 

previous three chapters and provides final recommendations for funding allocation and 

horizontal curve identification, parameter estimation, and safety performance analysis. 

1.3 REVIEW OF LITERATURE 

 There are two main methods of evaluating roadway safety performance: high crash 

location, or “black spot” analysis and systematic, or “mass action” analysis.  Historically 

black spot analysis has been the most common method to identify candidate locations for 

safety improvements (Preston, et al., 2010).  Black spot analysis finds intersections, 

horizontal curves, or even short roadway corridors that “exhibit unusually high crash 

frequencies or crash rates” (p. 3 Preston, e. al., 2010).  Locations are then analyzed, ranked 

and prioritized.  Black spot analysis typically use all crashes as a performance measure due to 

fatal and serious injury crashes being too widely dispersed and random to yield statistically 

significant locations. 

 Mass action analysis is a fairly new method deployed by state DOTs.  Mass action is 

a proactive method that targets low density and random crashes by employing a system-wide 

improvement.  The objective of the mass action method is to “identify candidates for a wide 
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deployment of lower-cost safety measures over many miles of roadway segments, corridors, 

or even over the entire roadway system” (p. 4, Preston et al., 2010).   

Road departure and cross center line crashes are two examples of crashes that occur 

randomly and commonly on high speed rural roadways.  These crashes are distributed widely 

across many miles of roadway and therefore are not identified using a “black spot” analysis.  

Systematic improvements such as shoulder or center line rumble strips are two low cost 

countermeasures that can be deployed to mitigate these widely dispersed crashes.  

The safety of an entity, or roadway, cannot be measured solely by the count of 

accidents because of the random fluctuation of those accidents.  If the safety of an entity 

were to be measured by only number of accidents in a year, a drop in crashes from one year 

to the next would mean that the safety of the roadway improved, when the roadway itself 

remained unchanged.  One way to define safety is as “the number of accidents (crashes), or 

accident consequences, by kind and severity, expected to occur on an entity during a specific 

period” (p. 24, Hauer, 1997).    

Crash severity is commonly measured on the KABCO scale.  The KABC0 was 

established by the American National Standards Institute, and is used by law enforcement 

officers in coding crash details at a crash scene (Sinha, 2007).  The state of Iowa uses this 

scale to distinguish crash severity.  Crashes are classified by the most severely injured person 

involved in a crash.  Table 1-1 shows the KABCO scale for crash severity, including a 

description of each coding.  

 

Table 1-1. KABCO scale for crash severity. 

Code Crash Severity Definition

K Fatal One or more deaths

A Serious Injury
incapacitating injury preventing victim from functioning 

normally (e.g., paralysis, broken/distorted limbs, etc.)

B Minor Injury
non-incapacitating but visible injury (e.g., abrasions, 

bruising, swelling, limping, etc.)

C Possible Injury/ Unknown probable but not visible injury (e.g., sore/stiff neck)

O Property Damage Only (PDO) property-damage only
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The expected number of crashes on a horizontal curve is estimated by applying crash 

modification factors (CMF) to base conditions.  The base condition safety performance 

function (SPF) for a rural roadway segment is shown in Equation 1-1 (HSM Practitioner’s 

Guide, 2011).   

 

Equation 1-1: 

                             
             

AADTn = AADT of horizontal curve segment 

L = horizontal curve length 

 

CMFs are developed for different roadway attributes to assess the relative safety 

performance of an entity.  The CMF for horizontal curves was developed to represent how 

the crash experience of tangent and horizontal curve segments differ.  Equation 1-2 shows 

the CMF for the safety effect of horizontal curves.  This CMF, along with several other 

CMFs related to the roadway, are then applied to the SPF for the base prediction model as 

shown in Equation 1-3 to determine the total safety effect of individual geometric features 

(HSM Practitioner’s Guide, 2011). 

 

Equation 1-2: 

          
       (

    
 )          

      
 

  = horizontal curve length (miles) 

  = horizontal curve radius (feet) 

  = presence of spiral transition.  One if yes, zero if no. 

 

Equation 1-3: 

                       (∏    )     
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               predicted number of crashes for a rural horizontal curve 

     = Crash modification factor for roadway attributei 

   = 1.0 for base condition 
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 CHAPTER 2. OPTIMIZING SAFETY FUND ALLOCATION 

2.1 INTRODUCTION 

In 2005, the Safe, Accountable, Flexible, Efficient Transportation Equality Act: A 

Legacy for Users (SAFETEA-LU) was signed into law.  This new transportation bill built on 

its predecessors and became the largest surface transportation investment in U.S. history.  

One key component of this bill is highway safety.  A separately funded Highway Safety 

Improvement Program (HSIP) was established to help finance projects that will aid in 

reducing highway fatalities (Federal Highway Administration, 2006). 

The HSIP requires each state to develop a Strategic Highway Safety Plan (SHSP).  

“An SHSP is a statewide-coordinated safety plan that provides a comprehensive framework 

for reducing highway fatalities and serious injuries on all public roads” (Federal Highway 

Administration, 2006).  Using and integrating the four E’s – engineering, education, 

enforcement, and emergency medical services (EMS), the SHSP establishes statewide safety 

goals, objectives and key emphasis areas.  Moreover, the SHSP requires that safety 

investment decisions be data-driven. 

1998’s Transportation Equality Act for the 21
st
 Century (TEA-21) pushed for “safety 

conscious planning” with the goal to prevent “human and economic losses that result from 

motor vehicle and non-motorized traveler-related crashes” (NCHRP, 2010).  Human and 

economic loss implies crashes of all severity, from fatal crashes to property damage only 

crashes.  As previously mentioned the purpose of the SHSP is to reduce highway fatalities 

and serious injuries on all public roads.  This is a change from the previous legislation which 

aimed to prevent all crash severities.   

 The need to address all public roads is apparent in Figure 2-1 and Figure 2-2.  Figure 

2-1 shows the fatal crash trend on Iowa roadways by facility type from 1970-2009.  Figure 

2-2 shows the fatal crash rate trend on Iowa roadways by facility type for the same time 

period.  Fatal crashes on Iowa roadways have decreased since the 1970’s but not equally on 

all roadway facilities.  Rural secondary roadways have actually seen an increase over the past 

ten years.  Fatal crash rates have also decreased until about ten years, where they have stayed 

fairly constant since 2000. 
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Figure 2-1. Fatal crash trend on Iowa roadways by facility type, 1970-2009. 

 

 

Figure 2-2. Fatal crash rate trend on Iowa roadways by facility type, 1970-2009. 
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This study was conducted to first complete a wholly data-driven analysis of crash 

data in Iowa to recognize potential facilities or crash types in need of safety mitigations.  

Secondly, safety funding allocations were matched with crash data for different categories of 

roadways to identify the funding investment relative to the crash data.  Lastly, funding 

allocation considerations, including the need for finding a balance between high crash 

locations and mass-action analysis, are discussed. 

2.2 REVIEW OF LITERATURE 

In 2006 the Iowa Department of Transportation (DOT) published the first Iowa 

Comprehensive Highway Safety Plan (CHSP) as mandated by SAFETEA-LU and the HSIP.  

The Iowa CHSP was a joint effort by safety stakeholders throughout the state of Iowa.  It 

aimed to reduce the annual average of traffic fatalities in Iowa to 400 by 2015.  From this 

effort five policy and eight program strategies were recommended to aid in the reduction of 

traffic fatalities and injuries (CHSP, 2006).  The top five safety policy areas recommended 

were: 

 Young drivers 

 Occupant protection 

 Motorcycle safety 

 Traffic safety enforcement  

 Traffic safety improvement program 

 

The top eight safety program areas recommended were: 

 Lane departure 

 Safety corridors 

 Intersections 

 Local roads 

 State traffic records 

 Senior mobility 

 Safety training and education 

 Unpaved rural roads 
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The “Iowa Five Percent Report” identifies areas of safety needs based on an analysis 

of fatal and major injury crashes.  This analysis identified Iowa’s most severe safety needs 

are crashes associated with single vehicle running off the road (SVROR), vehicles crossing 

the centerline on two-lane highways, vehicles crossing the medians on freeways, horizontal 

curves, intersections, unbelted drivers and passengers, impaired drivers, and speeding (Iowa 

Five Percent Most Severe Safety Needs Report, 2010).  Sites for these eight safety needs are 

then prioritized, separately, based on annual fatal and serious injury crash densities.  After 

prioritization, safety mitigations are suggested for each site. 

Iowa intersections are also prioritized in the “Safety Improvement Candidate 

Location (SICL) List”.  The SICL list identifies the “200 highest ranked intersections relative 

to crash history” (p. 2 Iowa Five Percent Most Severe Safety Needs Report, 2010).  The top 

five percent of these intersections are identified as the most severe intersections with safety 

needs in the “Iowa Five Percent Report”.   

Safety improvement projects in Iowa are funded, primarily, by two sources.  The first 

source of funding is federal funding from the HSIP.  “The actual allocation is subjective 

based on need, the specific strategy selected, and the five percent process.  Projects are 

prioritized by benefit-cost analysis consistent with requirements for reporting project 

evaluations to FHWA” (p. 14, Preston et. al., 2010).  Of the available HSIP funding, 

approximately 90 percent is spent on rural roads.  All HSIP funding is used on roadways not 

under the state jurisdiction.   

Iowa also provides state safety funding through its Traffic Safety Improvement 

Program (TSIP).  These funds are available to all local jurisdictions (cities and counties) as 

well as the Iowa DOT.  Funding is available for three categories of projects; site-specific, 

traffic control devices, and research, studies, and public information.  Overall, Iowa “directs 

approximately 18 percent of safety funds towards projects on local roads” (p. 13 Preston, et. 

al, 2010). 

Preston, et al. (2010) also identified possible safety funding allocation inequalities 

based on state survey data and overall crash data.  HSIP funding is available for the local 

system, however the federal reporting requirements are often cumbersome and few local 

agencies take advantage of the opportunity because there is a separate, less labor intensive 
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safety program (TSIP).  Consequently, about 82 percent of available safety funds are 

allocated to the state system even though nearly 50 percent of fatal crashes occur on the local 

system (Preston, et al., 2010).    

2.3 DATA 

2.3.1 Crash and roadway data 

 Crash data were assembled from the Iowa SAVER crash database for 2001-2008.  

Fatal and major injury crashes were queried from the database of all crashes.  Statewide, 

from 2001-2008, there were 3,018 fatal crashes and 13,370 injury crashes.  Statewide 

roadway data were obtained from the Iowa GIMS roadway database for 2005.  Crash data 

were assigned to GIMS roadway segments using a spatial join in ArcGIS. 

Using a spatial join to assign crash data to the GIMS network can be problematic 

because of cartographic issues associated with GIMS data from year to year.  Each year the 

cartography of the GIMS network improves and the GIMS data get closer and closer to their 

actual locations.  As a result, the alignment of the GIMS database can shift slightly from year 

to year.  This becomes a problem because crash locations are digitized based on the existing 

cartography.  Therefore, crashes that are not digitized using a given year’s GIMS database 

could be wrongly located on that year’s GIMS network.  Figure 2-3 shows a “location where 

the cartography changed and the new intersection location is fifty meters from the previous 

intersection location” (p. 18 Jackson, 2006). 
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Figure 2-3. The effect of cartography changes. 

 

These cartographic issues are compounded at intersection locations.  Because of this, 

only crashes coded as occurring at an intersection were classified as intersection crashes.  

Other crashes that were visibly located near an intersection, but were not coded as occurring 

at an intersection, were classified as non-intersection crashes. 

 The US Bureau of the Census 2000 Urbanized Area Boundary Map was used to code 

the GIMS database as either urban or rural.  “Urban” areas are classified by all territories, 

population, and housing units located within an urbanized area or urban cluster” (Bureau of 

the Census, 2000).  “Rural” areas are anything outside of an urbanized area or cluster. 

Roadway segments were then classified as either “urban” or “rural” based on the land 

directly adjacent to the roadway segment.  This designation was used in lieu of MPO and 

incorporated cities’ boundaries. Since MPO and incorporated cities’ boundaries contain areas 

of undeveloped land, some roadways within these boundaries are coded as urban when they 

are, in nature, rural roadways. 
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2.3.2 Data related to statewide highway safety projects 

Data related to HSIP and TSIP safety projects were provided by the Iowa DOT Office 

of Traffic Safety.  This data included project descriptions and funding information as well as 

a GIS “shapefile” with the location of each project.  Data related to HSIP funded safety 

projects were available for the 2001-2009 fiscal years.  TSIP funded projects data for fiscal 

years 2004-2011 were also provided.  Figure 2-4 shows a timeline of the overlap in crash 

data and safety project data. 

 

 

Figure 2-4. Crash and safety project data timeline 

2.4 METHODOLOGY 

2.4.1 Crash data classification 

 As previously mentioned, crash data were assigned to the GIMS network using a 

spatial join in ArcGIS.  Roadway attributes including access control, number of lanes, 

median type, and jurisdiction responsible for the roadway, were used to code the facility type 

of each roadway segment.  Secondary and municipal roadways were combined and coded as 

the local system.   Crash types, such as single-vehicle-run-of-road (SVROR), head-on, right 

angle, rear end, ran stop sign, and ran signal, were coded using attributes available in the 

crash data.  Queries in ArcGIS were then performed to categorize each crash by crash type 
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and crash location (e.g. roadway type, intersection/non-intersection, rural/urban).   

2.4.2 Safety project classification 

In order to categorize each safety project, the safety project description and funding 

data were joined to the project location data in ArcGIS.  To distinguish between intersection 

and non-intersection, each project was coded manually using its project description data.  

Urban and rural coding was accomplished using the US census Urbanized Area Boundary 

Map information in ArcGIS.   

To determine the facility type of each highway safety project, a spatial join was 

performed between the project location data and the GIMS network.   Roadway attributes 

including access control, number of lanes, median type, and jurisdiction responsible for the 

roadway, were then used to code the facility type of each safety project.  Safety project data 

were then categorized using the same criteria as per the crash classification.  This process 

was performed for both the HSIP funded projects and TSIP funded projects.    

2.4.3 Combined crash and safety project classifications  

After the crash data classification and safety project data classifications were 

complete they were matched and combined.  This was done to match safety funding to 

different categories of crash types and locations.  For example, crashes classified as road 

departures occurring at non-intersection locations on rural freeways were matched with the 

safety funding allocated to non-intersection, rural freeway improvements mitigating road 

departures (e.g. rumble strips, shoulder improvements).   

A “relative difference” for each category was then calculated.  The “relative 

difference” of a crash location/type category shows the difference between the safety 

investment and the number of crashes for that category, relative to all other categories.  

Equation 2-1 shows equation used to calculate “relative difference”. 

 

Equation 2-1: 
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% funding = (funding allocated to category i / total statewide safety funding)*100 

% K+A = (number of K+A crashes for category i / total statewide K+A crashes)*100 

     = maximum difference between              and          

 

The “relative difference” yields a number between -1 and +1.  The closer a roadway 

category’s “relative difference” is to -1, the more crashes there are relative to the safety 

dollars invested in that category.  The closer a roadway category’s “relative difference” is to 

+1, the more funding is invested relative to the number of crashes in that category.  The 

closer to zero a category’s “relative difference”, the more balanced the funding is relative to 

the number of crashes in that category.   

To avoid confusion, the term “classification” will be used to describe the process of 

separating crash locations and crash types.  The term roadway “category” will be used to 

describe the specific crash location and crash type (e.g. rural, state expressway or rural, 

secondary, two-lane paved single vehicle run-off-road). 

2.5 ANALYSIS AND RESULTS 

To illustrate the balance between crash location and type and the allocation of safety 

funding, three classifications were completed.  The first classified crash data only by location 

and type, the second classified the allocation of funding by location and type, and the final 

classification combined and matched the first two.  Lastly, funding allocation relative to 

crash density is addressed and the need for balancing the black spot and systematic methods 

is discussed. 

2.5.1 Statewide crash data classification  

Crash data were classified first by system type (state and local) and then by urban and 

rural distinction.  The local system in this analysis includes both secondary and municipal 

roadways.  Figure 2-5 shows the classification of the primary system fatal and serious injury 

crashes.  Figure 2-6 shows the classification of fatal and serious injury crashes on the local 

roadway system. 
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Figure 2-5. State system – fatal and serious injury crash data classification. 

 

 

Figure 2-6. Local system – fatal and serious injury crash classification. 
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 Of the 16,388 fatal and major injury crashes statewide during the 8 year analysis 

period, nearly two-thirds occurred on local roadways.  For both the primary and local system 

there were about twice as many rural crashes as urban crashes.  Furthermore there is a greater 

portion of fatal crashes on rural roadways than on urban roadways.  Forty-four percent of all 

fatalities occur on the rural local system while 35 percent occur on rural primary roadways.  

Therefore over three in every four fatalities occurs on a rural roadway. 

 This over dispersion on the rural system can be attributed to a few factors.  First, rural 

roadways tend to operate at higher speeds therefore the risk for a fatal crash is increased.  

Second, emergency response times for rural roadways are much higher than on urban 

roadways.  According to a 1999 study for the International Symposium on Transportation 

Recorders the average elapsed time from the moment of the crash until the victim arrives at 

the hospital for rural fatal crashes is 17 minutes more than for urban fatal crashes (Champion. 

et. al, 1999).  This additional time for emergency response on rural roadways could 

contribute to a greater number of fatalities. 

 At intersections, right angle crashes account for the majority of fatal and serious 

injury crashes.  Right angle crashes by nature tend to be more severe.  Nearly 9 percent of the 

statewide fatal and serious injury crashes are right angle crashes occurring at urban 

intersections on the local system. 

 Single vehicle run-off-road crashes are the most common non-intersection crash.  

Single vehicle run-off-road crashes tend to be primarily a rural roadway issue.  Over 15 

percent of all statewide K+A crashes and nearly 20 percent of all fatal crashes are local 

system run-off crashes.  On the primary system, single vehicle run-off-road crashes account 

for 9 percent of the statewide K+A crashes and 11 percent of all fatal crashes. 

2.5.2 Statewide allocation of safety funds 

The second classification categorized safety project funds based on roadway on 

which the improvement was completed as well as by improvement type.   Safety project data 

were first classified by system type (state and local) and then by urban and rural distinction.  

The local system in this analysis includes both secondary and municipal roadways.  Projects 
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funded with HSIP funds and projects funded with TSIP funds were assessed separately and in 

total.  Figure 2-7 illustrates the allocation of safety funding by project type and location on 

the state system.  Figure 2-8 presents the same information for the local system.  

 

 

Figure 2-7. State system – allocation of funding by project type and location. 
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Figure 2-8. Local system – allocation of funding by project type and location. 

 

 Of the $93 million invested in both the HSIP and TSIP projects, 80 percent of the 

total funding was allocated to the state system.  All $55 million of the HSIP program funds 

from FY 2001-2009 were invested on the state system.  Funding from the TSIP program 

allocated from FY 2004-20011 was balanced, more or less evenly, between the state and 

local system. 

 Approximately 65 percent of the combined HSIP and TSIP funding was invested on 

the rural state system.  Furthermore, approximately a third of all combined HSIP and TSIP 

funding was allocated to shoulder and edge-line rumble strip projects.  The ease of 

implementation and relatively small capital cost of edge-line rumble strips make these types 

of projects very attractive.  According to the Iowa DOT, “low-cost safety improvements 

(such as edge-line rumble strips, cable median barrier, and bigger and brighter curve and 

chevron signs) have proven to be very effective when data is systematically used to identify 

and address locations with high crash rates” (p.16, Iowa CHSP, 2006). 

 For intersection improvements, turning lanes are the most represented safety project.  
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Adding turning lanes can reduce rear-end crashes but are not a right-angle preventative 

mitigation (CMF Clearinghouse, 2010).  Urban intersections on the state system are allocated 

about 19 percent of all statewide safety funds.  Urban intersections are often considered black 

spots because of high volumes of traffic and a large number of conflict points.  “Common 

black spot locations are intersections, particularly signalized intersections along multi-lane 

urban arterial roadways” (p. 3 Preston et. al., 2010). 

2.5.3 Combined crash data and safety project classification  

After the crash data classification and safety project data classification were 

completed, corresponding categories were matched.  For example, crashes classified as road 

departures occurring at non-intersection locations on rural freeways were matched with the 

safety funding allocated to non-intersection, rural freeway improvements mitigating road 

departures (e.g. rumble strips, shoulder improvements).  Once all categories of crash location 

and types were matched with their corresponding funding, the “relative difference” for each 

category was calculated.  Figure 2-9 provides an example of how the “relative difference” 

was calculated using Equation 2-1. 

 

 

Figure 2-9. "Relative difference" example calculation. 
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The “relative difference” for each crash location/type category allows categories with 

different numbers of crashes and different amounts of funding to be compared relative to 

each other.  To better depict how each category compares to one another, a “coloring scale” 

was created.  Figure 2-10 shows the “color scale” used to visually compare different crash 

location and crash type categories.   

 

 

Figure 2-10. “Relative difference” color scale. 

 

The maximum difference between                    and                was 

found to be 30.9.  Thirty point nine is therefore used as      in all “relative difference” 

calculations.  The complete classification, matching crash data and safety funding, is shown 

in Figure 2-11, Figure 2-12, and Figure 2-13.   
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Figure 2-11. Matched crash data and safety funding data classification for rural roadway facilities. 
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Figure 2-12. Matched crash data and safety funding data classification for urban state system facilities. 
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Figure 2-13. Matched crash data and safety funding data classification for urban local system facilities.
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Some safety projects were not matched with crash data.  Projects such as turn lanes 

and signals mitigate more than one type of crash; some projects included multiple project 

types, while some descriptions did not include enough adequate details to connect them with 

a specific crash type.  For these reasons, some projects and crash types were combined and 

excluded from the “relative difference” analysis.  These categories are identified with a gray 

color box. 

In Iowa it appears that rural and urban funding is nearly balanced with the amount of 

statewide crashes occurring in each respective area.  However, a quick examination of the 

classification shows an apparent disconnect of funding between the state and local system.  

About 25 percent of the statewide fatal and serious injury crashes occurred on the rural state 

system yet 56 percent of the statewide funding was allocated to these roadways.  In contrast, 

approximately 36 percent of the statewide fatal and serious injury crashes occurred on the 

rural local system and only 9 percent of statewide funding was allocated to these roadways.  

There are many reasons for this apparent disconnect as discussed in the following section. 

 Furthermore, rural state expressways, where only about 5 percent of statewide crashes 

occur, were allocated more than one fourth of all statewide expenditures.  Most of the 

projects on rural state expressways were shoulder and/or edge line rumble strip projects.  On 

the rural local system, unpaved roadways received no funding, while paved roadways 

received about 9 percent of the statewide funding as compared to the 23 percent of K+A 

crashes that occur on these roadways. 

 The urban state system received almost a fourth of the statewide funding, yet only 11 

percent of the statewide fatal and serious injury crashes during the study period occurred on 

these roadways.  Multi-lane divided intersections on the state system received more funding 

relative to the number of crashes that occurred on these roadways. The urban local system, 

which had about one fourth of all statewide K+A crashes, received only 12 percent of all 

statewide funds. 
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2.5.4 Safety funding allocation relative to crash density 

Upon first inspection there appears to be a significant disconnect between the 

statewide crash incidence and the safety funding allocation.  According to current state 

policy, funding through the HSIP program is only available for state system projects; local 

jurisdictions do not have access to that funding.  Moreover, this funding accounts for 60 

percent of the statewide funding ($54.9 million). 

Like many states, Iowa invests safety dollars on more densely traveled roadways.  

Roadways such as rural, state expressways and multi-lane, urban roadways have received 

more funding because their crash densities are greater than other systems.   The roadway 

systems with higher crash densities tend to receive more funding relative to number of 

crashes occurring on those systems. Figure 2-14 illustrates this investment in higher density 

roadways. Figure 2-14 shows the safety investment on Iowa roadways relative to the number 

of crashes on each system, with the average number of crashes per mile, per year from 2001-

2008.   

 

Figure 2-14. Relative safety investment for Iowa roadway classifications (crash densities 

show in parentheses).  
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This begs the question, if safety investments are made based on crash density, would 

it ever be more practical to invest safety dollars on roadway systems with many crashes 

spread over many miles of roadway like the classification analysis suggests?  Consider this 

hypothetical example: 

US Highway 218 directly south of Interstate 80 in Johnson County is a four-lane 

divided expressway.  This 15.5 mile section of roadway has previously received funding 

from the HSIP program for paved shoulders and rumble strips. Assume that there is still a 

crash problem and the recommended mitigation is to flatten the sideslopes of the roadway 

from 1:4 to 1:6.  Also consider a proposal to add milled-in rumble strips on 8 corridors, 

totaling 84.5 miles all on secondary, two-lane paved roadways.  All of these corridors are 

from the 2009 Iowa 5 percent report and labeled as corridors with the highest fatal and 

serious injury crash density for single vehicle run-of-road crashes. The expressway project 

has a crash density of 4.7 crashes/mile/year compared to an aggregate crash density for all 

eight secondary roadways of 1.0 crashes/mile/year.  Therefore if considering crash density, it 

would be recommended that the expressway project be completed over the secondary 

roadway projects. 

The following assumptions were made for the sideslope flattening project: 

 

 Assume other mitigations have been done and flattening the sideslope is the 

preferred option 

 Assume a constant and typical slope throughout the 15.5 mile segment 

 Assume the unit cost of fill/flattening is $3.08 CY (Iowa DOT Bid Express) 

 Assume flattening applies to roadsides and median 

 Assume each slope is 24’, therefore on average, need 3.00 yd
2
 to flatten slope 

from 1:4 to 1:6 

 Assume total CY of fill/flattening need is 327,360 CY 

 Assume estimated cost of crash by severity as per National Safety Council, 

2009 
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The following assumptions were made for the rumble strip projects: 

 

 Assume roadways meet the minimum requirements for edge-line rumble strip 

projects in Iowa 

 Assume the unit cost of milled-in rumble strips is $658/mi/shoulder (Iowa 

DOT Bid Express) 

 Assume a constant and typical slope throughout the 15.5 mile segment 

 

Table 2-1 shows a comparison of these two proposed projects.  The rumble strip 

projects on the rural, secondary, two-lane corridors yields a benefit/cost ratio (42.4) much 

higher than that of the rural expressway sideslope project (2.6).  This is a good example of a 

project on a roadway with a lower crash density that should be implemented in lieu of a 

project on a high crash density roadway.  Investing safety funds where it can make a 

difference is most prudent. 

 

Table 2-1. Comparison of rural expressway sideslope flattening project and rural secondary 

two-lane rumble strip projects. 

K A B C 0 Total K A B C 0 Total

Rural State 

Expressway - 

Slope 

Flattening 

Project

15.5 0.5 2.125 8 8 54.13 72.75 0.76 0.38 1.62 6.08 6.08 41.1 55.29 $2,578,984 $1,008,269 2.6

Rural 

Secondary Two 

Lane -Rumble 

Strip Projects

84.5 1.13* 4.25* 6.00* 9.63* 12.75* 33.75* 0.74 0.83 3.15 4.44 7.12 9.44 24.975 $4,717,084 $111,202 42.4

Project Type Mileage
Average Crashes Per Year (2001-2008)

cSource: http:www.bidx.com

bSource: National Safety Council (estimated cost of crash)

aSource: CMF Clearinghouse

*SVROR crashes only

CMFa
Average Crashes Mitigated Per Year Estimated 

Benefitb

Estimated 

Costc

Estimated 

B/C

 

2.5.5 Black spot analysis vs. mass action analysis 

Another consideration needed in the funding allocation process is the method utilized 

to identify and prioritize sites, corridors, or even systems for potential safety investment.  

The data identify the most common fatal and serious injury, intersection crash type as right 

angle.  The most common fatal and serious injury, non-intersection crash type is single 
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vehicle run-off-road.  Right angle crashes account for approximately 25 percent of all fatal 

and serious injury crashes from 2001 to 2008, while SVROR crashes account for 33 percent 

all fatal and serious injury crashes over the same period. 

Historically, as identified by the literature, black spot analysis is the “most common 

method to identify candidate locations for safety investment” (p. 3, Preston et al., 2010).  The 

Iowa 5 Percent Report and SICL List are two examples of the use of black spot analysis to 

identify and prioritize intersections and corridors for safety investment.  These two processes 

are important and integral in addressing highway safety in Iowa but upon further inspection 

they only address a fraction of statewide crashes. 

Table 2-2 compares the intersection crashes at the top 200 intersections, as prioritized 

by the SICL list for 2003-2007, to all statewide and intersection crashes for the same period.  

In Iowa there are approximately 160,000 intersections, therefore 17 percent of all fatal and 

serious injury crashes occur at the top 0.125 percent of all intersections.  This is a very 

substantial number but it also means that 83 percent of all intersection crashes are spread 

across the other 150,800 intersections. 

 

Table 2-2. SICL list crash comparison. 

2.8% of all crashes

8.3% of all intersection crashes

4.8% of all K+A crashes

17.0% of all K+A intersection crashes

Top 200 Intersection Crashes (2003-2007)

484

8264

Number of K+A crashes occuring at the top 200 intersections

Number of crashes occuring at the top 200 intersections

 

 

Table 2-3 compares the SVROR fatal and serious crashes occurring on the top 33 

corridors, as prioritized by the 2010 Iowa 5 percent report, to all SVROR fatal and serious 

injury crashes occurring between 2001 and 2008.  The total mileage of these corridors is 

approximately 345 miles.  The state of Iowa has approximately 115,000 miles of roadway 

statewide, with about 105,300 miles of which is rural.   Therefore, approximately 4.1 percent 

of all SVROR crashes occur on only 0.3 percent of the total roadway network.  This also 

means that over 4,527 fatal and major injury SVROR crashes are distributed over about 

105,000 miles of rural roadways. 
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Table 2-3. Iowa 5 percent crash comparison for SVROR crashes. 

1.2% of all K+A crashes

4.1% of all K+A SVROR crashes

Top 33 SVROR Corridors by K+A Crash Density

Number of K+A crashes occuring at highest 33 SVROR crash 

density corridors
195

 

 

Using a high crash location approach to mitigate these widely distributed crashes is 

not effective because it will not yield many locations that exhibit unusually high crash 

frequencies or crash rates.  The only way to address these widely distributed crashes is to use 

a systematic approach.  This does not suggest, however, that black spot analysis not be 

utilized; rather it suggests that there needs to be a balance between the two methods. 

 

2.6 CONCLUSIONS AND RECOMMENDATIONS 

Several questions were addressed through the classification of statewide crash data.  

It appears that not all of Iowa’s roadway system elements are equally at risk.  For example, 

some facility types, such as state and local two-lane rural roadways are more at risk for single 

vehicle run-off-road crashes.  The results of the matching of crash data with safety project 

funding data suggest the shifting of funds from the high crash density state system to 

facilities on the low density local system.  However, it is clear that the redistribution of 

funds, from one system to another, includes many other factors such as crash density, 

benefit-cost, and other political issues. 

The allocation of funding should also identify what mitigations have been 

implemented and what additional options are available to maximize safety spending.  It is 

very possible for a safety project on a roadway with a lower crash density to be more 

effective than a project on a roadway with a very high crash density, depending on the 

projects and their benefit/cost ratios.  Crash reduction factors and benefit cost analyses are 

integral in aiding the safety funding decision making process as well.  Ultimately, the 

optimum allocation of resources would reduce the most possible fatal and serious injury 

crashes.   

Some crashes are too widely distributed over many miles of roadway to be identified 

as possible sites in need of safety mitigation.  It was recommended that the highway safety 
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process include both reactive (black spot) approaches as well as proactive (mass action) 

approaches.  There should be a balance among these two methods.  This optimum balance 

between black spot and mass action is yet to be determined.  It is recommended that this 

balance of black spot and mass action be addressed in future research. 
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 CHAPTER 3. SYSTEMWIDE IDENTIFICATION OF HORIZONTAL CURVES AND 

GEOMETERY PARAMETERS 

3.1 INTRODUCTION 

In order to analyze the safety performance of horizontal curves and mitigate 

associated crash problems, curve locations and characteristics must be known.  However, 

curve identification is difficult on a large system.  In Iowa, rural horizontal curves comprise 

of only 1.2 percent of the state’s total of 115,335 miles. Yet 10.5 percent of the state’s fatal 

crashes occur on these roadways.   

Table 3-1 shows this over representation of fatal crashes on horizontal curves in Iowa.  

Nationwide more than 25 percent of fatal crashes are associated with horizontal curves 

(FHWA).  Crash rates for horizontal curves are typically 1.5 to 4 times higher than the crash 

rates of tangent highway sections (Zegeer, et al., 1992).  Figure 3-1 shows the distribution of 

horizontal curves on paved, two-lane, rural highways in Iowa. 

 

Table 3-1. Iowa statewide crash comparison for horizontal curves (2001-2009). 

Fatal 353 2437 3355 14.5% 10.5%

Injury 5384 50584 153362 10.6% 3.5%

PDO 5861 108443 370195 5.4% 1.6%

All 11598 161464 526912 7.2% 2.2%

Statewide 

Crashes

Curve 

Crashes/

Rural 

Crashes

Curve 

Crashes/ 

Statewide 

Crashes

Crashes 

on 

Curves

Rural 

Crashes
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Figure 3-1. Two-lane horizontal curve distribution with paved two-lane, rural roads shown in 

gray. 

 

Recently the Iowa DOT has addressed safety concerns on horizontal curves.  In 2010, 

the Iowa 5 percent report identified and prioritized horizontal curves based on crash 

frequency.  However past studies show that prioritization of horizontal curves needs to be 

based on more than just crash frequency (Preston et al., 2009). Other factors such as curve 

radii, traffic volume, the presence of visual traps, intersections and proximity to other high 

priority curves should also be considered (Preston et al., 2009). 

The purpose of this chapter was to first create a statewide curve database by 

systematically identifying horizontal curves on two-lane rural roads in Iowa.  Secondly, a 

validation of the curve identification methods was completed using a sample of curves with 

as-built geometric data.  Lastly, the safety performance of horizontal curves in Iowa was 

explored using crash prediction models.  Chapter 4 of this thesis presents the crash prediction 

model based on these data.   
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3.2 REVIEW OF LITERATURE 

The most widely used method of curve geometry data collection includes the use of 

an in vehicle GPS receiver and some form of post-processing.  Patterson, D., et al. (2006) 

used GPS and GIS applications to collect and analyze horizontal curve geometry data.  The 

process included collecting field data at 0.1-second intervals using differential GPS 

surveying in a vehicle.  Results demonstrated that GPS could quickly, accurately, and 

inexpensively produce horizontal alignment data.   

 Pratt, et al. (2009) used a similar method to collect curve geometry while driving 

through a curve.  A GPS receiver was used to collect curve radius and deflection angle data.  

An electronic ball-bank indicator was used to gather superelevation data.  These two 

instruments were directly connected with a laptop, and, while driving, curve data were 

simultaneously compiled into an in house software package called the Texas Roadway 

Analysis and Measurement Software (TRAMS).  Data were collected at 25 foot increments, 

and curve radii were calculated.  These data were then post-processed to calculate a 

recommended advisory speed.  Results showed that this method provided an accurate and 

precise measurement of curve radius. However, these methods are impractical for collection 

of statewide curve data. 

Sanders (2007) provided a methodology for statewide data collection of horizontal 

curves using GPS centerlines.  GPS data for over 79,000 centerline miles of roadway were 

collected in Kentucky.  An automated process was developed using GIS to extract curve data 

and determine roadway geometry.  Results showed this GPS/GIS method provided much 

more accurate curve data than previous field-collected processes. 

3.3 DATA 

3.3.1 Roadway data 

In this study, Iowa statewide road data were obtained from the 2007 GIMS roadway 

database.  The complete GIMS database was reduced because the focus of this study is rural 

two-lane facilities.  Rural, two-lane facilities with a speed limit of 45 mph or greater were 

extracted from the complete roadway dataset.   



www.manaraa.com

34 

 

3.3.2 Calculated curve data 

Calculated curve data were obtained through a manual identification process 

discussed in the methodology section of this chapter.  The GIMS 2007 database was used for 

roadway attributes.  The Iowa Pavement Management Program (IPMP) provided GPS traces 

of the state’s roadways, originally obtained from in-vehicle GPS data collectors.  The data 

consist of points at ten meter increments along all paved routes throughout the state. 

3.3.3 As-built curve data 

As-built data were required for the validation of the calculated curve data geometry.  

As-built curve data were identified using the Iowa DOT’s Electronic Records Management 

System (ERMS).  ERMS contains historic roadway plans for all primary road projects in 

Iowa.  Secondary (county) road data were not available in the ERMS and were not included 

in the study.   

Curve data available in the historic roadway plans were manually extracted for a 

specific set of counties.  Data for 435 horizontal curves were identified in 15 counties 

throughout Iowa.  Figure 3-2 shows the counties in which horizontal curve data were 

identified.   Horizontal curve data were collected on paved two-lane rural roadways with a 

speed limit of 45 mph or greater to match the roadways used to identify curves in the created 

horizontal curve database.  Curve data were extracted by county because roadway plans in 

ERMS are stored by county.  Counties were chosen to yield a sample that is topographically 

diverse and geographically dispersed throughout the state. 
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Figure 3-2. Plan set curve data locations. 

3.4 METHODOLOGY 

3.4.1 Curve identification 

Horizontal curves were identified with the use of GIS tools.  To limit the extent of 

required visual inspection and to more systematically identify possible locations of horizontal 

curvature, polylines were first created, and later simplified, from the available IPMP GPS 

traces.  The remaining vertices in the simplified polylines primarily represented the locations 

of route termini and, more importantly, possible curvature.  GPS traces from IPMP, the 

GIMS roadway network and the simplified polyline vertices were then added into an ArcGIS 

workspace for visual inspection.  Aerial imagery was also used as a reference, where 

necessary.   

Once a reviewer identified a section of roadway as a horizontal curve, the GPS traces 

were selected and manually coded as being a part of a curve.  Post-processing was then 

performed on the GPS traces to extract only the “curve” records, combine the points for each 



www.manaraa.com

36 

 

curve, attach a unique identifier, and calculate the curve geometry.  After all curves were 

identified, they were compiled and reintroduced to the GIS environment for analysis.  Figure 

3-3 shows a roadway (black line), the location of the GPS traces (small green dots) and the 

location of the simplified polyline vertices (large green dots). The red line shows the final 

approximate location of the curve relative to the tangents. 

 

Figure 3-3. Curve identification process with GPS traces and simplified polyline vertices. 

 

Spiral transition data were not collected.  The reviewer identified possible locations 

of roadway curvature only.  Every curve was assumed to be a circular curve in order for the 

radius value to be estimated using circular regression during post-processing.   Therefore, if a 

curve was located it was assumed to be a circular curve. 

Estimated curve geometry included length, degree of curvature, and two different 

radius values.  The first curve radius value was calculated using circular regression.  Once a 

curve was identified, a circle was fitted through each GPS trace of the curve to find a best fit.  

The radius of that circle was the estimated radius of the curve.  This radius value is referred 

to as Rregression.  In order for a curve to be fit, a curve was required to have at least five GPS 

traces associated with it.  If a curve did not have five traces associated with it, the post-

processing would not work properly and the Rregression value would be estimated as zero. 

The second radius value was calculated using the long chord of the curve.  A straight 

line was fitted through the reviewer’s estimated point of curvature (PC) and point of 

tangency (PT) for each curve.  The radius value was then estimated using the long chord and 

the angle between the long chord and curve.  This radius value is referred to as Rchord.  For 
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simplicity and mass production the processes used to estimate both radius values where 

performed using a macro program in Microsoft Excel. 

3.4.2 Curve identification validation process 

In order to validate the curve identification process, as-built horizontal curve data 

needed to be compared to the estimated curve data for a sample of curves.  As previously 

mentioned, as-built curve data were extracted from historic roadway plans using ERMS and 

compiled.  A unique, as-built identifier, different from the unique identifier for the curve 

identification process, was given to each curve.  The location of the horizontal curves was 

then found using Google Map tools.  The unique, as-built identifier was then matched and 

attached to its corresponding horizontal curve data using GIS tools.  Once this process was 

completed, as-built curve data could be compared with the estimated curve data and validated 

for precision. 

Percent RMSE was used as a measure of precision to validate the curve identification 

process.  RMSE measures the deviation between the actual geometric feature value (e.g. 

length, radius), and the estimated geometric feature value.  A large percent RMSE indicates a 

large deviation between the actual and estimated values. 

 

Equation 3-1: 

         
    √

∑                     
 

 

         

(
∑         

     
)

 

           = calculated geometric feature value (e.g. Lpredicted, Rreg, Rchord) 

        = as-built geometric feature value (e.g. Lactual, Ladjusted, Ractual) 

      = number of horizontal curves 

 

Further analysis was completed to investigate the relationship between percent error 

and geometric features as well as how well the sample represents the entire database.  In 

order to explore the representation of roadway curves, the coincidence ratio was compared 

between the histogram of the sample of curves with as-built data and the histogram of all 
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primary roadway curves, as well as the histogram of entire population of curves (primary and 

secondary curves).  Histograms were compared for curve length and both radius estimation 

methods.  The estimated curve length values were divided into “bins” at 100 foot increments 

while both estimated radius values were divided in increments of 250 feet. 

The coincidence ratio compares two distributions and measures the percentage of 

total area in common between the two distributions.  It should be noted that the coincidence 

variable is only used to check whether or not the sample is representative of the entire 

population and is not a measure of precision.  Equation 3-2 shows the formula for calculating 

the coincidence ratio. 

 

Equation 3-2: 

                  
∑   {

     
   

     
  }

∑   {
     
   

     
  }

 

      = frequency of geometric values (e.g. Rregression) with radius value j from sample of 

curves 

      = frequency of geometric values (e.g. Rregression) with radius value j from population of 

curves (or primary roadway curves) 

  = total number of geometric values (e.g. Rregression) in sample of curves (329) 

  = total number of geometric values (e.g. Rregression) in population of curves (11,279) or 

primary roadway curves (2,349) 

3.5 ANALYSIS 

11,882 curves were identified during the curve identification process.  If a curve did 

not have at least five GPS traces assigned to it the Rregression value would be estimated as zero.  

Of the 11,882, 603 had less than five GPS traces and therefore an Rregression value of zero.  

Because of the zero value for the Rregression, these curves were removed from the analysis.  

Therefore a total of 11,279 curves were included in the statewide horizontal curve database.    

Table 3-2 gives the number of horizontal curves identified and the average curve 

geometry for the primary and secondary systems.  As expected, curves on secondary 
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roadway curves, tend to be shorter in length and have a sharper radius. 

 

Table 3-2. Identified curves by system type. 

L (ft) Rregression (ft) Rchord (ft)

Primary 2349 870 2162 2078

Secondary 8930 576 1158 1136

All 11279 637 1367 1332

Average Curve GeometryNumber of 

Curves

Roadway 

System

 

 

Using the historic roadway plans, as-built data were identified for 435 curves on the 

primary system.  Of these, 329 were matched with curves from the statewide curve database.  

The curves that were not matched were mostly large radius curves that were so large they 

were not identified as curves in the manual identification process.  A few curves were 

matched, but upon further inspection were found to have incorrect data.  These curves were 

omitted. 

3.5.1 Horizontal curve length estimation 

Figure 3-4 shows the actual horizontal curve length plotted against the estimated 

horizontal curve length.  The curve length was estimated during the curve identification 

process by manually estimating the PC and PT locations.  The percent RMSE of the curve 

length is 29.03 percent.  This magnitude error was expected for the curve length because of 

the way curve lengths were estimated.  It is difficult to identify exact location of where the 

curve ends and begins.  Furthermore there appears to be a systematic bias to underestimate 

the curve length.  These sources of error are discussed further in the “Sources of error” 

section of this chapter.  
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Figure 3-4. Actual curve length vs. estimated curve length. 

 

The absolute, percent error between the estimated curve length and as-built curve 

length versus the as-built curve length is plotted in Figure 3-5.  One would expect as the 

curve length increases, the percent error would decrease.  However, the percent errors do not 

necessarily follow this form although all large errors (>60 percent) are on curves shorter than 

1,500 feet in length.  Eighty-seven percent of all estimated curve length data have a percent 

error of less than 40 percent. 
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Figure 3-5. Curve length versus percent error of estimated length value. 

 

Figure 3-6 shows both the curve length histogram for the sample of curves with as-

built data and the curve length histogram for all curves identified on primary roadways.  

Comparing the two histograms yields a coincidence ratio of 0.826, indicating that 82 percent 

of the primary roadway data length values are described by the sample of curves with as-built 

data. 

When comparing the curve length histogram for the sample of curves to the curve 

length histogram of the entire population of curves (primary and secondary roadways) the 

coincidence ratio decreases to 0.580.  Figure 3-7 displays both the curve length histogram for 

the sample of curves data and the curve length histogram for the entire population of 

identified curves.   

The reason for this decrease is due to the inclusion of secondary roadway curves.  

Since the sample of curves data contain only data from primary roadway curves, the sample 

of curves is a better representative of the primary roadway curve data.  Secondary roadways, 

on average have shorter length curves and therefore the population of curves histogram is 

skewed towards shorter length curves. 
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Figure 3-6. Curve length histogram comparison for sample curves and primary roadway 

curves. 

 

 

Figure 3-7. Curve length histogram comparison for sample curves and all curves in database. 

 

3.5.2 Horizontal curve radius estimation using the circular regression method 

Figure 3-8 shows the actual, as-built curve radius plotted against the calculated curve 

radius using the circular regression method, Rregression.  The circular regression method is 
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relatively precise, with a percent RMSE of only 16.27 percent and a coefficient of 

determination of 0.9257.   

 

 

Figure 3-8. Actual radius vs. circular regression method estimated radius. 

 

The percent error between Rregression and the as-built curve radius is plotted against the 

as-built curve radius in Figure 3-9.  All large errors are associated with curves with radii less 

than 1,500.  It appears that as curve radius increases, percent error decreases.  On average, 

Rregression is very precise with 94 percent of all curves with as-built data have an Rregression 

percent error less than 30 percent.  Moreover, over 75 percent of all curves with as-built data 

have an Rregression percent error equal to or less than 5 percent. 
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Figure 3-9. Curve radius versus percent error of estimated radius value, Rregression. 

 

Figure 3-10 displays the curve radius (Rregression) histogram for both the sample of 

curves with as-built data and the histogram for all curves identified on primary roadways.  

The distribution of the sample of curves data coincides with 76.5 percent of primary roadway 

curves distribution.  The Rregression histogram for the sample of curves coincides with only 46 

percent of the Rregression histogram for the entire population of curves.  Figure 3-11 shows the 

comparison of these histograms.  An explanation for this decrease in coincidence ratio is 

similar to that of the curve length.  The inclusion of secondary roadway curves skews the 

histogram towards smaller radius curves because, on average, secondary roadway curves 

tend to be sharper. 
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Figure 3-10. Curve radius (Rregression) histogram comparison for sample curves and primary 

roadway curves. 

 

 

Figure 3-11. Curve radius (Rregression) histogram comparison for sample curves and all curves 

in database. 
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3.5.3 Horizontal curve radius estimation using the long chord method 

Figure 3-12 shows the actual, as-built curve radius plotted against the calculated 

curve radius using the long chord method.  The long chord method is just slightly less precise 

than the circular regression method, with a percent RMSE of 19.45 percent and coefficient of 

determination of 0.9016.   

There appears to be a systematic bias to underestimate the radius value in larger 

radius curves (>5000).  Possible explanations for this underestimation are described in the 

forthcoming sources of error section of this chapter. 

 

 

Figure 3-12. Actual curve radius vs. long chord method estimated curve radius. 

 

 

Figure 3-13 displays the percent error between Rchord and the as-built curve radius 

plotted against the as-built curve radius.  All percent errors greater than 50 percent are 

associated with curves with radii less than 2,000.  As with the Rregression percent error curve, it 
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all estimated Rchord values have a percent error less than 30 percent with 68 percent of the 

Rchord values having a percent error less than 5 percent.   

 

 

Figure 3-13. Curve radius versus percent error of estimated radius value, Rchord. 

 

The distribution of Rchord data for the sample of curves coincides with 77.3 percent of 

the distribution of Rchord data for all primary roadway curves.  However, when the sample of 

curves distribution for Rchord is compared to the entire population distribution, the 

coincidence ratio drops to 47.7 percent.  Figure 3-14 and Figure 3-15 show the Rchord 

distribution comparison between the sample of curves and the primary roadway curves and 

the entire population of curves, respectfully.  Again the explanation for this decrease in 

coincidence ratio is similar to that of the curve length and Rregression.  Again, the inclusion of 

secondary roadway curves skews the histogram towards smaller radius curves because, on 

average, secondary roadway curves tend to be sharper. 
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Figure 3-14. Curve radius (Rchord) histogram comparison for sample curves and primary 

roadway curves. 

 

Figure 3-15. Curve radius (Rchord) histogram comparison for sample curves and all curves in 

database. 
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RMSE for both radius values were very similar, with the Rregression only slightly more precise 

when compared to the as-built curve radius.   

Table 3-3 shows the percent RMSE for both estimated curve radius values for 

different radius ranges.   Figure 3-16 shows these same data only in graphic form.  Rchord is 

slightly more precise with lower radius curves (< 2,000 feet).  However, it is difficult to 

distinguish which estimated radius measure is more precision. 

 

Table 3-3. Percent RMSE comparison by curve radius category. 

Rreg Rchord

< 500 4 19.80% 15.51%

500- 1000 56 48.45% 41.72%

1000-1500 64 30.77% 28.07%

1500-2000 82 13.92% 12.45%

2000-2500 22 8.32% 8.30%

>=2500 101 10.09% 15.81%

All Curves 329 16.27% 19.45%

%RMSERadius 

Range (ft) # of Curves

 

 

 

Figure 3-16. Percent RMSE comparison by curve radius category. 
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3.5.5 Sources of error 

There are multiple sources of error that may explain the variation between the 

calculated radius and length values and the as-built radius and length values.  The first source 

of error is associated with off-tracking of the vehicle during the collection the GPS traces.  

Bonneson, et al. (2007) observed that when travelling through a curve, drivers, in order to 

limit the speed reduction needed to negotiate the curve, laterally shifted in their lane.  This 

lateral shift resulted in a slightly flattened curve radius.  Figure 3-17 shows the difference 

between the curve radius and the vehicle path radius.  This same behavior during the 

collection of GPS data could account for errors between the calculated geometric values and 

the as-built geometric values.   

 

Figure 3-17. Effect of lateral shift on travel path radius. 

 

A second source of error resulting in the flattening of curve radii was also observed.  

Some horizontal curve PC and PT locations were manually located outside of the curve 

segment along the tangent sections.  Because of this, portions of the tangent sections were 

used in the curve geometry estimation resulting in estimated curve radii larger than as-built 

radii.  This error was observed in approximately five percent of curves with as built data radii 

mostly ranging from 1,000 feet to 2,000 feet. 

The manual identification of the PC and PT location inside the curve segment was 

also detected in a large portion of horizontal curves.  It was observed that the reviewer was 
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more apt to estimate the PC and PT within the curve rather than farther out on the tangent. 

The curve length was underestimated in 82 percent of the 329 curves with as built data.  This 

underestimation of the horizontal curve length explains the larger errors associated with the 

prediction of the curve length. 

Another source of error can be attributed to the post processing of the GPS traces.  

After the GPS traces are coded as being a part of a curve, they are combined for each 

individual curve.  Each trace has a beginning and ending “location” associated with it.  If 

these points were not correctly ordered, the calculation of the long chord was incorrectly 

estimated.  Figure 3-18 shows the effect of incorrect GPS trace “location” data.  This error 

affected the estimated length of the curve as well as the estimated radius value, Rchord. 

 

 

  

Figure 3-18. Effect of incorrect GPS trace “location” data. 

 

As mentioned previously, in comparing the as-built curve radius and Rchord (Figure 
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3-12) there appears to be a bias to underestimate the radius value.  An investigation of this 

underestimation points to a possible error in the post-processing estimation of the radius 

value using the long chord method.  The long chord method uses the curve length and long 

chord between the estimated PC and PT to estimate the deflection angle, θ of the curve.  

When a curve is post-processed, the deflection angle is estimated using a series of iterations.  

If the deflection angle is underestimated the radius value, Rchord is underestimated.     

Figure 3-19 and Table 3-4 illustrate an example of this error.  Using ArcGIS and the 

as-built curve plan set, as shown in Figure 3-19, the actual and calculated curves could be 

scaled and compared.  Then using the post-processing spreadsheet, the as-built curve data 

could be back-calculated to show the error, as shown in Table 3-4.  The variables, c and d are 

the deviation from the actual PC and PT, respectfully.  Other instances of this error were 

investigated, and yielded similar results.   

 

 

Figure 3-19. Long chord method underestimation example. 
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Table 3-4. Long chord method calculation example. 

7th Iteration

L (ft) LC (ft) c (ft) d(ft)  θ7 R (ft) D (deg) Δ (deg) T (ft)

Calculated 817.38 816.55 171 100 0.078 Calculated 5240.97 1.09 8.94 409.52

Actual 1088.38 1086.74 - - 0.095 Actual 5726.60 1.00 10.89 545.83

Inputs Outputs

 

 

Lastly, conventional human error could also be a source of error.  The majority of the 

as-built curve data were extracted from roadway plans more than forty years old.  These 

plans are handwritten and there is a large possibility of human error in their creation, as well 

as the possibility of human error in the extraction of geometric data from these plans. 

3.5.6 Sensitivity of errors 

Because horizontal curve geometry is estimated, the sensitivity of safety performance 

to estimation errors is important to identify.  Assuming all other roadway attributes are 

constant and a spiral transition is not present, the expected safety performance of horizontal 

curves with different radii values could be estimated using Equations 1-1 through 1-3.  The 

safety performance of these curves could then be compared and effects of error could be 

measured.  Figure 3-20 shows the sensitivity of predicted crash frequency to errors in radius 

estimation process.   

The percent change in predicted crash frequency is relatively linear for percent 

differences of -25 percent and greater.  However, the percent change in predicted crash 

frequency increases exponentially from -25 percent differences in radius value and lower. 

Furthermore, the percent change in predicted crash frequency decreases as the actual radius 

increases.  In other words, as the actual radius value decreases, the more sensitive expected 

safety performance is to errors in the estimated radius value.  Furthermore, the 

underestimation of curve radii has a much larger effect on safety performance than 

overestimation. 
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Figure 3-20. Sensitivity of predicted crash frequency to radius percent difference. 

 

Using the circular regression method, approximately 54 percent of the curves with as-

built data had an underestimated radius value.  However, only 20 radius values were 

underestimated by greater than ten percent using the regression method.  Figure 3-21 displays 

the sensitivity of predicted crash frequency for 20 horizontal curves with a percent difference 

in radius values greater than ten percent.  Only two underestimated radius values had a 

deviation from the actual predicted crash frequency of greater than 15 percent.  Furthermore, 

only four radius values had a deviation of greater than ten percent. 
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Figure 3-21. Sensitivity of predicted crash frequency to Rregression percent difference. 

 

 The long chord method produced an underestimated radius value in 66 percent of the 

curves with as-built data.  Thirty-seven (11 percent) horizontal curves had a percent 

difference in radius values greater than ten percent.  Figure 3-22 shows the sensitivity of 

predicted crash frequency for the 37 horizontal curves with a percent difference in radius 

values greater than ten percent. Only one horizontal curve had a radius value with a percent 

change in predicted crash frequency greater than 15 percent.  

 As discussed previously, there appears to be a large bias to underestimate the radius 

value using the long chord method for curves with radii greater than 5,000 feet.  However, 

the predicted crash frequency for large radius curves are less sensitive to errors in the 

estimated radius value.  All but one of these large radius curves could expect less than a five 

percent change in predicted crash frequency as a result of underestimating the curve radius. 
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Figure 3-22. Sensitivity of predicted crash frequency to Rchord percent difference. 

 

3.6 CONCLUSIONS AND RECOMMENDATIONS 

Systemically identifying and precisely estimating curve geometry is an important step 

in understanding safety performance of horizontal curves.  This study investigated the 

creation of a statewide curve database and attempted to validate the precision of the 

estimated geometric features of each curve. The horizontal curve identification method was 

found to be an accurate and complete method for identifying possible locations of curvature 

on the road network.   

The validation results show that the curve identification method, as outlined 

previously, yielded a relatively precise method for estimating circular curve length and 

radius.  Some large errors in the estimation of curve length were observed, however, this was 

expected because of the manual identification of the PC and PT and its effect on curve 
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length.  In regards to estimating curve radius, the circular curve method is slightly more 

precise than the long chord method.  However, with only a 3 percent difference in percent 

RMSE and very similar percent error, this difference is not significant. 

It was found that the safety performance of smaller radius curves is more sensitive to 

errors in the estimated curve radius value.  Although some horizontal curves were found to 

have large errors associated with the estimated curve radius, the maximum expected change 

in the predicted crash frequency was found to be less than twenty percent of the actual 

predicted crash frequency.  For the use of safety performance evaluation, the majority of the 

horizontal curves in the database appear to have a predicted crash frequency within ten 

percent of the actual predicted crash frequency. 

One limitation to this study was that no as-built curve data were available for 

secondary roadway horizontal curves.  This, however, does not mean that the estimated 

geometric features of these secondary roadway curves are not estimated to the same precision 

of the primary roadway curves.  It only means that validation was not performed over this 

range of curves.  This study also ignored the presence of spiral transitions.  The literature 

shows that the presence of a spiral transition could affect the safety performance of curve.  It 

is recommended that the presence of spiral transitions and the possibility of estimating its 

value be investigated further. 

It is also recommended that further studies, including a larger sample of data, be 

performed to solidify the validation of this curve identification method.  It is further 

recommended that facilities with greater than two-lanes of travel be included in this 

investigation. 
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 CHAPTER 4. HORIZONTAL CURVE CRASH PREDICTION MODEL 

4.1 INTRODUCTION 

To reduce problems associated with small sample sizes and regression to the mean, it 

is important to consider both crash history as well as the expected safety performance of 

similar sites when identifying the safety performance of a highway segment.  Crash 

frequency, rate and cost are metrics commonly used to identify high crash locations (black 

spots).  The use of such metrics using data from study sites alone is known as naïve analysis.  

The empirical Bayes (EB) method accounts for both crash history as well as the safety 

performance of similar sites (Hauer, 2001).  The EB method utilizes a crash prediction model 

(safety performance function) to determine if a site is experiencing an unusually high 

frequency, rate, or severity of crashes.  Safety performance functions have been developed 

for a range of roadway attributes (HSM Practitioner’s Guide, 2011).  The safety performance 

function for horizontal curves was developed using a regression model developed by Zegeer 

et al. (1992).  However, for more accurate analysis, SPFs should be developed or at least 

calibrated for conditions specific to a study area. The purpose of this chapter is to develop 

safety performance functions for the horizontal curve database validated in Chapter 3 of this 

thesis.   

A review was conducted to identify and summarize literature related to the safety 

performance of horizontal curves relative to their geometric and operational features as 

represented in previous research producing curve crash prediction models.  In this study, 

crash models were developed for both serious crashes (fatal and major injury) and all crashes 

for curve radius values estimated by using the circular regression and long chord methods in 

Chapter 3.  Lastly, the reliability of the safety performance functions for all four models are 

compared.  

4.2 REVIEW OF LITERATURE 

 Bonneson, et al. (2007) developed a relationship between injury and fatal crash 

frequency and curve design using data from 1,757 curves in Texas.  Included in the analysis 
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was the development of the relationship between curve radius and crash rate, shown in 

Figure 4-1.  This curve indicates that crash rate increases sharply for curves with radii less 

than 1000 feet and that crashes on longer curves are less likely to result in an injury or 

fatality. 

 

Figure 4-1. Curve crash rate as a function of radius. 

 

 Preston et al. (2009) suggests similar findings between the crash rate and curve radii.  

Compared to 2000 foot radius curves, crash rates for 1500 foot curves are twice as high; 

crash rates for 1000 foot curves are five times as high, and crash rates for 500 foot curves are 

eleven times as high.   

The identification of promising horizontal curves (curves where improvements may 

result in significant reduction in crashes) should be based on more than just crashes.  Curve 

radii, traffic volume, presence of visual traps, intersections and proximity to other high 

priority curves should be considered.  Crash severity should also be included.   

A Safety Performance Function (SPF) is a curve relating expected crash frequency to 

traffic level for a roadway segment or intersection, over some fixed period of time (usually 

one year).  While SPFs could be developed for roads with specific features (e.g., lane width, 

shoulder type, etc.) they are typically developed for traffic (AADT) only. The impact of 

specific features on safety performance is now usually accounted for by the application of 

crash modification factors or functions (CMFs). 

As crashes are statistically random, positive count events with variance difference 
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than mean values, the negative binomial distribution is assumed to model their distribution 

(Hauer, 2001).  For models with a large number of zero event observations a zero-inflated 

negative binomial regression model could yield a better fit.  To compare and select the best 

fit between a negative binomial model and zero inflated negative binomial model a Vuong 

statistic is used (Washington, 2011). 

 Tarko (2007) developed SPFs for multiple facility types, including two-lane rural 

roadways.  Significant variables were found to be lane width, shoulder width, roadside 

hazard rating, driveway density, average grade for vertical curves and average degree of 

curvature in the segment (Tarko, 2007).  Equation 4-1 shows the general form used for the 

SPFs developed in the report. 

 

Equation 4-1: 

               ∑      

A = number of crashes in a year 

L = length of the section in miles 

Q = AADT of the section 

  = explanatory variables 

k,  ,   = constants 

 

In Accident Models for Two-Lane Rural Segments and Intersections (Vogt, 1998) 

crash prediction models were developed for both segments and intersections in Minnesota 

and Washington.  Poisson, negative binomial, extended binomial, and logistic techniques 

were tested and results showed that all but the logistic model yielded consistent values for 

regression variables.  Additionally, overdispersion was found to be present, thus the negative 

binomial models were preferred.  Exposure, lane and shoulder width, a roadside hazard 

rating, driveway density, degree of curvature, horizontal, and vertical alignment variables 

were all found to be significant in the segment models. 

Effective Safety Factors on Horizontal Curves of Two-lane Highways (Aram, 2010) 

developed crash prediction models for horizontal curves on two-lane rural highways.  The 

variables found to be significant were degree of curvature, curve segment length, 
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superelevation, length of spiral curve, shoulder width, and AADT (as an offset variable).  

Equation 4-2 shows the general form of the crash prediction model for this study. 

 

Equation 4-2: 

                                                                              

CR = number of horizontal curve-related crashes 

ADT = average daily traffic (veh day
-1

)  

L = roadway section length (m) 

Dc = Degree of curvature (18000 / πR) 

Ec = Superelevation horizontal curve (%)  

Lsp = Length spiral curve (m)  

Sw = Shoulder Width (m) 

Lct = Total length segment of horizontal curve (m), (L + 2Lsp) 

 

 Bonneson, et al. (2006) calibrated the accident modification factor (AMF) for 

horizontal curve radii for 1,757 curves in Texas.  This study included the calibration of a 

negative binomial regression crash prediction model.  Variables for the model included, 

AADT, curve segment length, degree of curvature, and a categorical region variable.  

Separate calibrations of the AMF for lane width and shoulder width were also computed. 

 To compare models several methods are available.  The Akaike Information Criterion 

(AIC) is a measure that is used to compare models with different error distributions using the 

same set of data.  The AIC is a relative measure of the information lost when a model is 

created.  The lower the AIC the better the model (Hu, 2007).  The AIC, however is not a 

goodness-of-fit measure.  For goodness-of-fit of a regression model, the McFadden ρ
2
 

statistic is a common measure.  The McFadden ρ
2
 statistic yields a value between zero and 

one and a “statistic close to one suggests that the model is predicting the outcomes with near 

certainty” (p.322, Washington 2011).  The McFadden ρ
2
 increases with the inclusion of 

additional parameters; to account for this a corrected ρ
2
 is estimated as shown in  

Equation 4-3.  The McFadden ρ
2
 tends to be small with a value better 0.2 and 0.4 to be 

considered satisfactory (Ainsworth, 2010). 
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Equation 4-3: 

     
       

     
 

      = log likelihood at convergence with parameter vector   

      = initial log likelihood (with all parameters set to zero) 

K = number of parameters in the vector   

4.3 DESCRIPTIVE STATISTICS 

It is important to investigate general data relationships before a crash prediction 

model is created.  In order to gain a better understanding of horizontal curve safety, trends 

related to attributes of horizontal curves are explored.  This section provides an overview of 

statistics related to attributes of horizontal curves for all Iowa rural, paved, two-lane 

roadways, including both primary and secondary roadways.   

4.3.1 All rural, paved, two-lane roadway horizontal curves 

Figure 4-2 shows the number of horizontal curves by number of all crashes regardless 

of severity.  Fifty-three percent of horizontal curves statewide had no crashes of any severity 

from 2001-2009.  Eighty-eight percent of all horizontal curves have no more than two 

crashes of any severity during that same period.  Only 22 horizontal curves had greater than 

nine crashes (or an average of one crash of any severity per year) over the study period.   

When limiting the analysis to only serious crashes (fatal + serious injury), 90 percent 

of all horizontal curves have zero crashes recorded over the nine year study period.  Only one 

horizontal curve experienced over three serious crashes during the study period.  The many 

zeros in the database can present special problems for regression analysis and this topic will 

be discussed later. 
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Figure 4-2. Number of horizontal curves by number of all crashes. 

 

Figure 4-3 displays the total number of all crashes, regardless of severity, for all 

horizontal curves by AADT. AADT for all horizontal curves in this study, range from under 

100 to approximately 10,000.  Forty-one percent of all crashes occur on roadways with an 

AADT of less than 1,000, while 39 percent of all crashes occur on roadways with an AADT 

between 1,000 and 3,000.  

Figure 4-4 charts the total number of serious crashes for all horizontal curves against 

AADT.  Nearly half of all serious crashes on horizontal curves occurred on roadways with 

less than 1,000 AADT.  All crashes and serious crashes over the nine year study period 

appear to be distributed in a similar fashion. 
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Figure 4-3. All crashes by AADT on all rural, paved, two-lane roadway horizontal curves. 

 

Figure 4-4. Serious crashes (K+A) by AADT on all rural, paved, two-lane roadway 

horizontal curves. 
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Figure 4-5 shows the crash frequency for six different curve radius categories, as well 

as for all curves, by crash type.  It appears that more crashes occur on horizontal curves with 

a radius between 500 and 1,500 feet, but when compared to the number of curves in each 

category, all categories are relatively similar.  Figure 4-6 shows the crash severity for each of 

these categories as a percentage.  Curves with radii between 500 and 1,500 appear to 

experience slightly more serious crashes (K+A) relative to other radius value ranges. 

 

 

Figure 4-5. Number of crashes by curve radius category for all rural, paved, two-lane 

roadway curves. 
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Figure 4-6. Crash severity ratio by curve radius category for all rural, paved, two-lane 

roadway curves. 

 

From the data it would appear that smaller radius horizontal curves have higher crash 

rates.  Using Equation 4-4 (Iowa DOT, 1989) to compute rate, Figure 4-7 shows the crash 

rate per HMVMT by crash severity for six curve radius categories.  For each successively 

smaller curve radius category, the all-crash rate appears to roughly double.  Severity appears 

to be inversely related to the all-crash rate. 

 

Equation 4-4: 

                   
 ∑                        

 ∑              ∑              
 

 

Crashes = number of crashes linked to each Horizontal Curve 

AADT = average annual daily traffic for horizontal curve roadway segment 

L = length of curve (miles) 
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Figure 4-7. Crash rate per HMVMT for all crash severities by curve radius category. 

 

Figure 4-8 examines the fatal crash rate per HMVMT for each curve radius category.  

The trend for fatal crashes is similar to the trend for all crashes: the smaller the curve radii, 

the higher the crash rate.  The fatal crash rate for all horizontal curves in this study is 

6.64/HMVMT, nearly five times higher than Iowa’s rural roadway fatal crash rate of 

1.42/HMVMT.  
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Figure 4-8. Fatal crash rate per HMVMT by curve radius category for all curves. 

 

Figure 4-9 shows the crash frequency for all horizontal curves in this study by crash 

severity and lane width.  It is difficult to recognize any trends as lane width categories are not 

represented equally, and 11 and 12 foot lanes are most prevalent.  These two categories have 

similar distributions of curve crash severity.  

 

 

Figure 4-9. Crash frequency for all horizontal curves by crash severity and lane width. 
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Figure 4-10 shows the crash frequency for all horizontal curves by crash severity and 

terrain.  Terrain is a categorical attribute that refers to the lane adjacent to the roadway.  

Categories for terrain include: not applicable (N/A), flat, rolling, and hilly.  Horizontal curves 

appear to more prevalent in rolling terrain. It appears that each terrain has a similar crash 

frequency relative to the number of curves in each category, but again it is difficult to 

distinguish any definite trends in the data because each category is not equally represented. 

 

 

Figure 4-10. Crash frequency for all horizontal curves by crash severity and terrain adjacent 

to the roadway. 
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Figure 4-11. Crash frequency for all horizontal curves by crash severity and shoulder type. 

 

 

Figure 4-12. Crash frequency for all horizontal curves by crash severity and shoulder width. 
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distributed between 1,000-4,000 AADT than the AADT versus crash frequency figure for all 

roadways (Figure 4-3).  Over 70 percent of all crashes occurring on primary roadway curves 

occur with traffic volumes between 1,000 and 4,000.  

 

 

Figure 4-13. All crash frequency by AADT on primary, rural, paved, two-lane roadway 

horizontal curves. 

 

Figure 4-14 shows the serious crash frequency by AADT on primary, rural, paved, 
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these roadways. 
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Figure 4-14. Serious crash (K+A) frequency by AADT on primary, rural, paved, two-lane 

roadway horizontal curves. 

 

Crash rate trends for primary road horizontal curves are similar to that of all roadways as 

shown by Figure 4-15.  Crash rates decrease as curve radii, Rregression increases.  Crashes rates 

also increase with decreasing severity in each curve radius category. 

 

 

Figure 4-15. Crash rate per HMVMT on primary roadway curves for all crash severities by 

curve radius category. 
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Horizontal curve crashes by severity, lane width, and terrain for primary roads is 

shown in Table 4-1.  Twelve foot lanes are the most common lane width on paved, two-lane 

primary roadways in Iowa.  It is difficult to detect trends in the data related to lane width and 

terrain because each category is not equally represented.   

 

Table 4-1. Horizontal curve crashes by severity, lane width, and terrain for primary roads. 

K A B C O ALL CRASHES

<9 0 0 0 1 2 3

9 2 4 5 8 10 29

10 3 5 15 12 45 80

11 23 44 85 147 238 537

12 95 193 441 581 1349 2659

>12 7 22 77 113 298 517

N/A 9 34 91 148 370 652

Flat 39 86 161 200 480 966

Hilly 74 126 310 448 932 1890

Rolling 8 22 61 66 160 317

Total Crashes 130 268 623 862 1942 3825
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Attribute

Crash Severity

PRIMARY ROADWAY HORIZONTAL CURVES

 

 

Table 4-2 displays horizontal curve crashes by severity, shoulder type, and shoulder 

width for primary roads in Iowa.   Again, it is difficult to distinguish crash severity trends 

associated with these attributes because they are not equally represented.  
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Table 4-2. Horizontal curve crashes by severity, shoulder type, and shoulder width for 

primary roads. 

K A B C O ALL CRASHES

None 0 4 26 48 122 200

Earth 38 85 175 235 494 1027

Gravel 82 166 392 556 1254 2450

Paved 10 13 30 23 72 148

0 0 4 26 48 122 200

1'-2' 4 6 16 22 33 81

3'-4' 30 49 120 191 308 698

5'-6' 14 44 103 118 278 557

7'-8' 36 76 182 232 504 1030

>8' 46 89 176 251 697 1259

Total Crashes 130 268 623 862 1942 3825

PRIMARY ROADWAY HORIZONTAL CURVES

Attribute

Crash Severity
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4.3.3 Secondary rural, paved, two-lane roadway horizontal curves 

Figure 4-16 charts the all-crash frequency by AADT on secondary roadway curves.  

Since most secondary roadways experience low traffic volumes, crashes are concentrated on 

segments with an AADT less than 1,500.  Over 90 percent of all secondary roadway curve 

have an AADT less than 1,500.  Data for serious injury crashes on secondary roadways have 

a similar trend as shown in Figure 4-17. 

 

 

Figure 4-16. All crash frequency by AADT on secondary, rural, paved, two-lane roadway 

horizontal curves. 
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Figure 4-17. Serious crash frequency by AADT on secondary, rural, paved, two-lane 

roadway horizontal curves. 

 

The data suggest that smaller radius horizontal curves on secondary roads have higher 

crash rates as displayed in Figure 4-18.  The all crash rate trend on secondary road curves is 
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all-crash rates.  The same can be said for fatal crashes on secondary roadway horizontal 

curves.  This trend is illustrated in Figure 4-19.  It should be noted that from curve radii 

ranging from 1,000 feet to 1,500 feet, primary road horizontal curves have a slightly higher 

crash rate than secondary road curves.  This is the only curve radii range where primary 

roads experience a higher crash rate than secondary roads. 

 

0

10

20

30

40

50

60

70

80

90

<
1

0
0

4
0

0

8
0

0

1
2

0
0

1
6

0
0

2
0

0
0

2
4

0
0

2
8

0
0

3
2

0
0

3
6

0
0

4
0

0
0

4
4

0
0

4
8

0
0

5
2

0
0

5
6

0
0

6
0

0
0

6
4

0
0

6
8

0
0

7
2

0
0

7
6

0
0

8
0

0
0

8
4

0
0

8
8

0
0

9
2

0
0

9
6

0
0

1
0

0
0

0

Se
ri

o
u

s 
C

ra
sh

e
s 

(K
+A

) 

AADT (rounded to nearest 100) 



www.manaraa.com

76 

 

 

Figure 4-18. Crash rate per HMVMT on secondary roadway curves for all crash severities by 

curve radius category. 

 

 

Figure 4-19. Fatal crash rate per HMVMT on secondary and primary roadway curves 

comparison. 
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Table 4-3 shows horizontal curve crashes by severity, lane width, and terrain for 

secondary roads.  Table 4-4 displays the same data except with roadway attributes, shoulder 

type and shoulder width.  Because the classes of each attribute are not equally represented, it 

is difficult to identify trends in the data. 

 

Table 4-3. Horizontal curve crashes by severity, lane width, and terrain for secondary roads. 

K A B C O ALL CRASHES

<9 1 2 2 1 4 10

9 4 4 10 18 48 84

10 3 16 38 51 92 200

11 138 392 802 907 2028 4267

12 57 151 416 400 1212 2236

>12 10 31 99 129 335 604

N/A 8 35 106 135 386 670

Flat 48 155 333 345 869 1750

Hilly 131 342 780 849 1984 4086

Rolling 26 64 148 177 480 895

Total Crashes 130 268 623 862 1942 3825

Attribute

Crash Severity

SECONDARY ROADWAY HORIZONTAL CURVES
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th
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Table 4-4. Horizontal curve crashes by severity, shoulder type, and shoulder width for 

secondary roads. 

K A B C O ALL CRASHES

None 2 4 13 27 68 114

Earth 109 323 739 820 2003 3994

Gravel 93 253 566 610 1510 3032

Paved 9 16 49 49 138 261

0 2 4 13 27 68 114

1'-2' 23 114 309 339 803 1588

3'-4' 69 209 426 425 1074 2203

5'-6' 70 172 375 435 1001 2053

7'-8' 32 58 149 187 476 902

>8' 17 39 95 93 297 541

Total Crashes 130 268 623 862 1942 3825

SECONDARY ROADWAY HORIZONTAL CURVES

Attribute

Crash Severity
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4.4 METHODOLOGY 

4.4.1 Data collection and preparation 

Crash data were acquired from the Iowa SAVER crash database for the period 2001-

2009.  Data for all crashes, regardless of severity, were collected for this analysis.  Statewide 

road data were collected from the Iowa GIMS roadway database for 2007.  Rural paved two-

lane roadways with a speed limit equal to or greater than 45 mph were then selected from the 

complete roadway database.  Since this study is focused on horizontal curve safety and 

identification, crashes within 100 meters of an identified curve were queried from the initial 

complete set of 2001-2009 crashes.  To account for the topographic errors associated with 

each different year of GIMS file, multiple GIMS layers were overlaid to identify horizontal 

curve crashes geocoded to other years of GIMS data.   

Crashes located within 100 meters of each curve were identified as being possible 

curve crashes.  Multiple years of GIMS data were overlaid to account for cartographic 

changes from year to year.  Since crashes within 100 meters of each curve were included, 

some crashes on the tangent section were included as being a crash on a horizontal curve. 

Crashes occurring on horizontal curves caused by other factors not related to curve 

geometry were omitted from the safety performance analysis.  Crashes where the first 

harmful event or major cause was an animal collision were excluded.  Crashes identified as 

occurring at an intersection or crashes suspected of occurring at an intersection were also 

omitted.  Examples of these intersection crashes are those caused by running stop sign, 

running traffic signal, or failing to yield right-of-way at an intersection/traffic control device.  

After obviously unrelated crashes were removed, crash data were joined with their respective 

horizontal curves for analysis. 

4.4.2 Negative binomial regression 

Crash data for two radius estimation methods, Rregression and Rchord, were fitted to a 

generalized linear model using negative binomial regression in SAS.    Equation 4-5 shows 

the general form of the safety performance function.  
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Equation 4-5: 

                                  

  = expected number of crashes (per unit time) 

     = length of curve segment in feet 

     = AADT of curve segment 

  = model covariates (roadway attributes) 

    = model coefficients 

 

LENG is an offset variable and is considered directly proportional to the expected number of 

crashes. Equation 4-5 was derived from Equation 4-6.  For modeling purposes, the natural 

log of the AADT and length for each horizontal curve was used in the regression procedure 

in order to utilize the model form in Equation 4-5: 

 

Equation 4-6: 

                                        

 

4.4.3 Variables 

The following variables were used in the regression procedure: 

 

LENG: The curve length in feet was considered an offset variable in the model 

 

Log(AADT): The natural log of the horizontal curve segment’s AADT. 

 

Rregression: Curve radius in feet calculated using the circular regression method. 

 

Rchord: Curve radius in feet calculated using the long chord method 

 

LANEWID: The width in feet of the roadway lane (half the surface width) 
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SHDWIDTH: The width in feet of the shoulder. 

 

SHDTYPE 0: Equals 1 if there is no shoulder.  Zero if not. 

 

SHDTYPE 1: Equals 1 if the shoulder type is earth.  Zero if not. 

 

SHDTYPE 2: Equals 1 if the shoulder type is gravel.  Zero if not. 

 

SHDTYPE 6: Equals 1 if the shoulder type is paved.  Zero if not. 

 

TERRAIN 0: Equals 1 if terrain is not applicable.  Zero if not. 

 

TERRAIN 1: Equals 1 if terrain is flat.  Zero if not. 

 

TERRAIN 2: Equals 1 if terrain is rolling.  Zero if not. 

 

TERRAIN 3: Equals 1 if terrain is hilly.  Zero if not. 

 

LIMITMPH: Speed limit of the roadway in miles per hour. 

 

Other variables were considered for the safety performance functions but were not 

included because the data were not easily obtained or Iowa does not maintain it.  As vertical 

alignment is not maintained by Iowa, a terrain variable was used to represent the general 

vertical alignment of the roadway.  Spiral transition geometry, superelevation, driveway 

density, and proximity to other high priority curves were also considered for the crash 

prediction model, however, this data were not readily available. 

The shoulder type (SHDTYPE) and terrain (TERRAIN) variables are categorical 

variables.  For modeling purposes, dummy variables were created for each category of each 

variable. 
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4.5 ANALYSIS 

Four different safety performance functions were created using the negative binomial 

regression model.  Two crash models, one for all crashes and one for serious crashes (fatal + 

serious injury) crashes, were formed for both horizontal curve radius estimation methods, for 

a total of four models.  Variables were included if their p-value indicated the variable’s 

coefficient was statistically significant. 

Equation 4-5 shows the general form for the crash prediction models.  Each safety 

performance function estimates the predicted number of horizontal curve crashes over a 9 

year period.  In each model, the dispersion factor was found to be statistically significant.  

4.5.1 All crashes with Rregression 

 Table 4-5 shows the negative binomial regression output for predicting all crashes 

using Rregression.  The estimated coefficient for each parameter and their respective p-values 

are included in the output.  The p-value is used to test a variable’s significance in the model.  

Also included are the dispersion parameter, φ, model comparison statistic, AIC, and both log 

likelihood statistics.  All parameters except, lane width, speed limit, and shoulder type were 

found to significant.  Equation 4-7 shows the form of the safety performance function for all 

crashes using Rregression. 

 

Table 4-5. All crash model using Rregression. 

Parameter Estimate SD P-Value 

Intercept -11.2556 0.1056 <.0001 

Rregression -0.0004 <0.0001 <.0001 

SHDWIDTH -0.083 0.0055 <.0001 

TERRAIN 0 0.0838 0.0589 0.1551 

TERRAIN 1 0.1094 0.047 0.0199 

TERRAIN 2 0.1128 0.0423 0.0077 

Log(AADT) 0.8522 0.0163 <.0001 

φ (dispersion) 0.6132 0.0248   

AIC 28031.59     

Log Likelihood -7410.2984 
  

Full Log Likelihood -14007.7941 
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Equation 4-7: 

                   
                                                        

                               

4.5.2 Serious crashes with Rregression 

Table 4-6 shows the negative binomial regression output for predicting fatal and 

serious injury crashes using Rregression.  All parameters except speed limit and shoulder type 

were found to significant.  Lane width was found to be significant in predicting fatal and 

serious injury crashes but not all crashes when using Rregression in a crash prediction model.   

Equation 4-8 shows the form of the safety performance function for all crashes using 

Rregression. 

 

Table 4-6. Serious crash model using Rregression. 

Parameter Estimate SD P-Value 

Intercept -11.7813 0.3408 <.0001 

Rregression -0.0004 <0.0001 <.0001 

LANEWID -0.1198 0.0264 <.0001 

SHDWIDTH -0.054 0.0128 <.0001 

TERRAIN 0 -0.1906 0.152 0.21 

TERRAIN 1 0.2593 0.1122 0.0208 

TERRAIN 2 0.22 0.1037 0.0338 

Log(AADT) 0.7735 0.0387 <.0001 

φ (dispersion) 0.5215 0.1357   

AIC 7428.649     

Log Likelihood -3611.5007 
  

Full Log Likelihood -3705.3247   

 

Equation 4-8: 

                   
                                                       

                                              

4.5.3 All crashes with Rchord 

Table 4-7 shows the negative binomial regression output for predicting all crashes 

using Rchord.  Similar to the all crashes model with Rregression, all parameters except, lane 
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width, speed limit, and shoulder type were found to significant.  The AIC for predicting all 

crashes using Rchord is slightly lower than when using Rregression.  Equation 4-9 shows the form 

of the safety performance function for all crashes using Rchord. 

 

Table 4-7. All crash model using Rchord. 

Parameter Estimate SD P-Value 

Intercept -11.26 0.1054 <.0001 

Rchord -0.0005 <0.0001 <.0001 

SHDWIDTH -0.0803 0.0054 <.0001 

TERRAIN 0 0.0814 0.0588 0.1659 

TERRAIN 1 0.1093 0.0469 0.0198 

TERRAIN 2 0.114 0.0422 0.0069 

Log(AADT) 0.8591 0.0163 <.0001 

φ (dispersion) 0.6059 0.0246   

AIC 27971.53     

Log Likelihood -7380.2715 
  

Full Log Likelihood -13977.7671   

 

Equation 4-9: 

                   
                                                   

                               

4.5.4 Serious crashes with Rchord 

Table 4-8 shows the negative binomial regression output for predicting fatal and 

serious injury crashes using Rchord.  All parameters except speed limit and shoulder type were 

found to significant.  Lane width was found to be significant in predicting fatal and serious 

injury crashes but not all crashes when using Rchord in a crash prediction model.  The AIC for 

predicting fatal and serious injury crashes using Rchord is slightly lower than when using 

Rregression.  Equation 4-10 shows the form of the safety performance function for all crashes 

using Rchord. 
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Table 4-8. Serious crash model using Rchord. 

Parameter 

Estimate SD P-

Value 

Intercept -11.7941 0.3403 <.0001 

Rchord -0.0005 <0.0001 <.0001 

LANEWID -0.1187 0.0264 <.0001 

SHDWIDTH -0.0514 0.0129 <.0001 

TERRAIN 0 -0.1986 0.1519 0.1911 

TERRAIN 1 0.2597 0.1121 0.0205 

TERRAIN 2 0.2206 0.1036 0.0332 

Log(AADT) 0.779 0.0387 <.0001 

φ (dispersion) 0.512 0.1348   

AIC 7419.531     

Log Likelihood -3606.9417 
  

Full Log Likelihood -3700.7657   

 

Equation 4-10: 

                   
                                                  

                                              

4.5.5 Goodness-of-fit comparison 

 The goodness-of-fit was computed for each of the four models using the McFadden’s 

ρ
2
 statistic as shown in Equation 4-3.  The all crash models for Rregression and Rchord are very 

comparable.  Both models explain approximately 47 percent of the actual crash frequency.  

The serious injury crash models are also comparable but explain only two percent of the data 

associated with the actual serious crash frequency.  Fatal and serious injury crashes are quite 

random and therefore it is difficult to model these crashes with certainty.   

 

Table 4-9.  McFadden's ρ
2
 goodness-of-fit comparison. 

All Crashes K+A Crashes

Rregression 0.47042 0.02289

Rchord 0.47143 0.02292  
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4.5.6 Empirical Bayes usefulness comparison 

In order to estimate expected crashes at a site using the empirical Bayes process, a 

weighted average of the safety performance function must be calculated.  This weighted 

average determines how much the safety performance function contributes to the expected 

number of crashes at a site (Hauer, 2001).  The weight can range from a value of zero to one.  

The closer the weight is to one, the more reliable the safety performance function estimates 

the expected number of crashes at that site.   

Equation 4-11 shows the weight calculation. 

 

Equation 4-11: 

       
 

  
     

 

 

µ = model predicted number of crashes 

Y = number of years of crash data 

  = dispersion parameter 

 

The average weight for each of the four models was calculated.  The all crashes 

models for Rregression and Rchord were compared as was the fatal and serious injury crashes for 

Rregression and Rchord.  These weights were compared to see which model contributes more to 

the empirical Bayes process.  The model with the higher average weight is said to be 

represented more in the EB crash prediction.  Table 4-10 shows the average weight for each 

of the four crash prediction models. 

 

Table 4-10. Calculated average weights for comparing a model's usefulness in the empirical 

Bayes process. 

All Crashes K+A Crashes

Rregression 0.4733 0.8389

Rchord 0.4844 0.8457  
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4.5.6 Interpretation of models 

It would be expected that as curve radius decreases, crash frequency increases, but 

this is not necessarily the case.   Figure 4-20 charts the expected all crash frequency verses 

the estimated curve radius, Rregression.  Figure 4-21 shows the serious crash frequency verses 

the estimated curve radius, Rregression.  The same figures using Rchord yielded nearly identical 

results.  

 

 

Figure 4-20. Expected all-crash frequency vs. curve radius on all horizontal curves. 

 

 

Figure 4-21. Expected serious crash frequency vs. curve radius on all horizontal curves. 
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The expected crash frequency for all and serious crashes appears to be even from 

curve radii of 500 feet to 3000 feet.  This is due to the effect of other roadway attributes such 

as lane width, shoulder type and width, AADT, superelevation, and curve length on the 

safety performance of horizontal curves.  Changes in these attributes can make a larger radius 

curve perform similarly to a smaller radius curve with superior roadway characteristics.  For 

this reason, curve radius, by itself is not related to the severity of crashes on horizontal 

curves. 

It was unexpected that crash frequency would decrease from a curve radius of 500 to 

a curve radius of zero.  One possible explanation for this is shown in Figure 4-22 (Bonneson 

et al., 2007).   

 

 

Figure 4-22. Effect of radius on curve speed. 

 

For sharper curves, drivers tend to reduce their speed as they transition from a tangent 

segment to a curve segment.  As curve radius decreases, the amount of speed reduction 

increases.  For curves radii less than 500 feet, this reduction is especially significant.  This 

resultant speed reduction could explain the reduction in crash frequency for horizontal curves 

with radii less than 500 feet. 
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4.6 CONCLUSIONS AND RECOMMENDATIONS 

Crash modeling is an important step in understanding and improving the safety 

performance of horizontal curves.  Descriptive statistics indicated a strong inverse relation 

between curve radius and crash rate.  However, using descriptive statistics alone, it is 

difficult to find a relationship between curve radius and crash frequency. 

Because such a large number of curves experienced zero fatal and serious injury 

crashes during the nine year study period, a zero-inflated negative binomial regression model 

was considered.  However, the Vuong statistical test, comparing the zero-inflated negative 

binomial and negative binomial regression models for fatal and serious injury crashes was 

inconclusive.  Therefore a zero-inflated was not used. 

 Crash models were created for all crashes and serious crashes (fatal + serious injury) 

using both radius estimation methods, Rregression and Rchord.  A goodness-of-fit statistic, ρ
2
, 

showed that both estimated curve radii models predicted crash expectancy with similar 

certainty.  Both models explain approximately 47 percent of the expected crash frequency.  

The serious injury crash models, however, explain only two percent of the data associated 

with the expected crash frequency.  Fatal and serious injury crashes are quite random and 

therefore it is difficult to model these crashes with certainty.  Other attributes related to crash 

severity and consequence, such as sideslope and clear zone data, could improve the fit of the 

serious crash models. 

Crash models were also compared using the weighted average from the empirical 

Bayes process.  The crash model for all crashes and serious crashes using Rchord was 

identified as contributing more to the empirical Bayes crash estimation than the crash models 

using Rregression.  However, the difference between the models using Rchord and the models 

using Rregression is so small it can be considered negligible.   

Interpretation of the crash models demonstrated that curve radius by itself is not 

related to the severity of horizontal curve crashes.  The presence of other roadway attributes 

coupled with curve radius, however, is related.  It is recommended that additional variables 

such as sideslope data, clear zone data, and the presence of a spiral transition be included in 

future research.  

It is also recommended that future work include speed limit as a categorical variable 
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because speed limit as a continuous variable was not found to be significant in any models.  

An explanation for this is that all curves are located on paved, two-lane, rural roadways with 

a speed limit of at least 45 mph.  The maximum speed limit on two-lane Iowa facilities is 55 

mph, and speed limits are commonly set at 5 mph increments.  Therefore, there are only three 

possible speed limits for the curves in this study, 45, 50, and 55 mph.  Defining LIMITMPH 

as a categorical variable, with these three speed limit categories, could yield different results 

in regards to the significance of speed limit in a crash prediction model.  
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 CHAPTER 5. GENERAL CONCLUSIONS 

5.1 GENERAL DISCUSSION 

Identifying where safety funding should be allocated continues to be a challenge.  

Knowing the type of roadway facilities most at-risk and the types of crashes occurring on 

those roadways is but one piece of the puzzle.  Blindly shifting funding from one facility to 

another, based solely on what the crash data are suggesting, is not advised without having an 

estimate of potential consequences.  Safety funding should be allocated based on a 

combination of where the crash data suggest and where the funding has the most benefit in 

reducing fatalities and serious injuries.  In doing so, finding an optimum balance between 

black spot analysis and mass-action could be more closely achieved. 

Understanding safety performance on horizontal curves also continues to be a 

challenge. When creating and analyzing a statewide horizontal curve database for safety 

performance it is important to have a reliable and precise estimation method.  This thesis 

validated the use of a systematic horizontal curve geometry estimation method; however care 

should be taken when relying on these estimated values in understanding the safety 

performance of horizontal curves. 

5.2 RECOMMENDATIONS AND CONCLUSIONS 

When attempting to understand how to allocate safety funding it is important to 

consider not only where the data suggests funding should be spent but also where the greatest 

benefit for the cost can be achieved.  It is recommended that the analysis performed in 

Chapter 2 be combined with a benefit cost analysis of potential safety projects, site specific 

and mass-action, to determine how best to allocate safety funding. 

Chapter 3 provided a validation of a systematic identification method for horizontal 

curves in Iowa.  The method for identifying horizontal curves was found to be an acceptable 

method for finding and estimating curve geometry. The circular curve method for estimating 

curve radius was found to be slightly more precise than the long chord method: however, the 

difference between the two datasets was not found to be statistically significant. 

A sensitivity analysis showed that the safety performance of smaller radius curves is 
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more sensitive to errors in the estimated curve radius value.  Although some horizontal 

curves were found to have large errors associated with the estimated curve radius, the 

maximum expected change in the predicted crash frequency was found to be less than twenty 

percent of the actual predicted crash frequency.  For the use of safety performance 

evaluation, the majority of the horizontal curves in the database appear to have a predicted 

crash frequency within ten percent of the actual predicted crash frequency. 

Crash prediction models for all crashes and serious crashes were developed using 

both estimated curve radii values, Rregression and Rchord.   The McFadden’s ρ
2
 statistic and 

average weight computed during the empirical Bayes process were used to compare the 

safety performance functions.   It was found that the models for both radius values are, 

relatively speaking, equally good. 

5.3 FUTURE RESEARCH 

5.3.1 Funding allocation 

Future work should be focused on determining which “problem” areas can be 

mitigated in the most cost effective manner.  Furthermore, future research should include a 

benefit cost analysis of both black-spot locations and mass-action projects.  This work should 

also include the utilization the Highway Safety Manual and methods involving crash 

reduction factors. 

5.3.2 Expanded horizontal curve identification 

 This study focused only on identifying horizontal curves on rural, paved, two-lane 

highways.  Further research should include facilities with more than two-lanes.  Validation 

could also be expanded if as-built data included some horizontal curves from secondary 

roadways. 

5.3.3 Additional variables 

The inclusion of additional variables should be considered for the development of 

crash prediction models for horizontal curves in future research.  Identifying the presence of 

spiral transitions and specifying speed limit as a categorical variable should be considered in 
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future research.  Other variables related to crash severity and consequence, such as sideslope 

and clear zone data should also be considered. 
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